Skip to main content
Log in

Improved myocardial perfusion and cardiac function by controlled-release basic fibroblast growth factor using fibrin glue in a canine infarct model

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Objective: Angiogenic therapy is emerging as a potential strategy for the treatment of ischemic heart disease but is limited by a relatively short half-life of growth factors. Fibrin glue (FG) provides a reservoir for controlled- release of growth factors. The aim of this study was to evaluate the effects of basic fibroblast growth factor (bFGF) incorporating FG on angiogenesis and cardiac performance in a canine infarct model. Methods: Acute myocardial infarction was induced by ligation of the left anterior descending coronary artery (LAD). Group I (n=6) underwent ligation of LAD alone. In Group II, transmural channels were created in the infarct area (n=6). In Group III, non-transmural channels were created to locate FG cylinders containing bFGF (n=6). Eight weeks after operation, myocardial perfusion was assessed by single photon emission computed tomography, cardiac function by echocardiography, and vascular development by immunohistochemical staining. Results: Total vascular density and the number of large vessels (internal diameter ≥50 μm) were dramatically higher in Group III than in Groups I and II at eight weeks. Only the controlled-release group exhibited an improvement in regional myocardial perfusion associated with lower defect score. Animals in Group III presented improved cardiac regional systolic and diastolic functions as well as global systolic function in comparison with the other two groups. Conclusions: Enhanced and sustained angiogenic response can be achieved by controlled-release bFGF incorporating FG within transmyocardial laser channels, thus enabling improvement in myocardial perfusion and cardiac function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beenken, A., Mohammadi, M., 2009. The FGF family: biology, pathophysiology and therapy. Nat. Rev. Drug Discov., 8(3):235–253. [doi:10.1038/nrd2792]

    Article  CAS  PubMed  Google Scholar 

  • Bourdillon, P.D., Broderick, T.M., Sawada, S.G., Armstrong, W.F., Ryan, T., Dillon, J.C., Fineberg, N.S., Feigenbaum, H., 1989. Regional wall motion index for infarct and noninfarct regions after reperfusion in acute myocardial infarction: comparison with global wall motion index. J. Am. Soc. Echocardiogr., 2(6):398–407.

    CAS  PubMed  Google Scholar 

  • Brown, K.J., Maynes, S.F., Bezos, A., Maguire, D.J., Ford, M.D., Parish, C.R., 1996. A novel in vitro assay for human angiogenesis. Lab. Invest., 75(4):539–555.

    CAS  PubMed  Google Scholar 

  • Chawla, P.S., Keelan, M.H., Kipshidze, N., 1999. Angiogenesis for the treatment of vascular diseases. Int. Angiol., 18(3):185–192.

    CAS  PubMed  Google Scholar 

  • Choi, J.S., Kim, K.B., Han, W., Kim, D.S., Park, J.S., Lee, J.J., Lee, D.S., 2006. Efficacy of therapeutic angiogenesis by intramyocardial injection of pCK-VEGF165 in pigs. Ann. Thorac. Surg., 82(2):679–686. [doi:10.1016/j.athoracsur.2006.03.028]

    Article  PubMed  Google Scholar 

  • Currie, L.J., Sharpe, J.R., Martin, R., 2001. The use of fibrin glue in skin grafts and tissue-engineered skin replacements: a review. Plast. Reconstr. Surg., 108(6):1713–1726. [doi:10.1097/00006534-200111000-00045]

    Article  CAS  PubMed  Google Scholar 

  • DeBlois, C., Cote, M.F., Doillon, C.J., 1994. Heparin- fibroblast growth factor-fibrin complex: in vitro and in vivo applications to collagen-based materials. Biomaterials, 15(9):665–672. [doi:10.1016/0142-9612(94)90164-3]

    Article  CAS  PubMed  Google Scholar 

  • Fasol, R., Schumacher, B., Schlaudraff, K., Hauenstein, K.H., Seitelberger, R., 1994. Experimental use of a modified fibrin glue to induce site-directed angiogenesis from the aorta to the heart. J. Thorac. Cardiovasc. Surg., 107(6): 1432–1439.

    CAS  PubMed  Google Scholar 

  • Germano, G., Kavanagh, P.B., Waechter, P., Areeda, J., van Kriekinge, S., Sharir, T., Lewin, H.C., Berman, D.S., 2000. A new algorithm for the quantitation of myocardial perfusion SPECT. I: technical principles and reproducibility. J. Nucl. Med., 41(4):712–719.

    CAS  PubMed  Google Scholar 

  • Harada, K., Grossman, W., Friedman, M., Edelman, E.R., Prasad, P.V., Keighley, C.S., Manning, W.J., Sellke, F.W., Simons, M., 1994. Basic fibroblast growth factor improves myocardial function in chronically ischemic porcine hearts. J. Clin. Invest., 94(2):623–630. [doi:10.1172/JCI117378]

    Article  CAS  PubMed  Google Scholar 

  • Heilmann, C.A., Attmann, T., von Samson, P., Gobel, H., Marme, D., Beyersdorf, F., Lutter, G., 2003. Transmyocardial laser revascularization combined with vascular endothelial growth factor 121 (VEGF121) gene therapy for chronic myocardial ischemia—do the effects really add up? Eur. J. Cardiothorac. Surg., 23(1):74–80. [doi: 10.1016/S1010-7940(02)00718-2]

    Article  PubMed  Google Scholar 

  • Henry, T.D., Annex, B.H., McKendall, G.R., Azrin, M.A., Lopez, J.J., Giordano, F.J., Shah, P.K., Willerson, J.T., Benza, R.L., Berman, D.S., et al., 2003. The VIVA trial: vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation, 107(10):1359–1365. [doi: 10.1161/01.CIR.0000061911.47710.8A]

    Article  CAS  PubMed  Google Scholar 

  • Henry, T.D., Grines, C.L., Watkins, M.W., Dib, N., Barbeau, G., Moreadith, R., Andrasfay, T., Engler, R.L., 2007. Effects of Ad5FGF-4 in patients with angina: an analysis of pooled data from the AGENT-3 and AGENT-4 trials. J. Am. Coll. Cardiol., 50(11):1038–1046. [doi:10.1016/j.jacc.2007.06.010]

    Article  CAS  PubMed  Google Scholar 

  • House, S.L., Bolte, C., Zhou, M., Doetschman, T., Klevitsky, R., Newman, G., Schultz Jel, J., 2003. Cardiac-specific overexpression of fibroblast growth factor-2 protects against myocardial dysfunction and infarction in a murine model of low-flow ischemia. Circulation, 108(25):3140–3148. [doi:10.1161/01.CIR.0000105723.91637.1C]

    Article  CAS  PubMed  Google Scholar 

  • Hughes, G.C., Kypson, A.P., St. Louis, J.D., Annex, B.H., Coleman, R.E., DeGrado, T.R., Donovan, C.L., Lowe, J.E., Landolfo, K.P., 1999. Improved perfusion and contractile reserve after transmyocardial laser revascularization in a model of hibernating myocardium. Ann. Thorac. Surg., 67(6):1714–1720. [doi:10.1016/S0003-4975(99)00317-3]

    Article  CAS  PubMed  Google Scholar 

  • Iwakura, A., Fujita, M., Kataoka, K., Tambara, K., Sakakibara, Y., Komeda, M., Tabata, Y., 2003. Intramyocardial sustained delivery of basic fibroblast growth factor improves angiogenesis and ventricular function in a rat infarct model. Heart Vessels, 18(2):93–99. [doi:10.1007/s10380-002-0686-5]

    Article  PubMed  Google Scholar 

  • Jeon, O., Ryu, S.H., Chung, J.H., Kim, B.S., 2005. Control of basic fibroblast growth factor release from fibrin gel with heparin and concentrations of fibrinogen and thrombin. J. Control Release, 105(3):249–259. [doi:10.1016/j.jconrel.2005.03.023]

    Article  CAS  PubMed  Google Scholar 

  • Jiang, Z.S., Srisakuldee, W., Soulet, F., Bouche, G., Kardami, E., 2004. Non-angiogenic FGF-2 protects the ischemic heart from injury, in the presence or absence of reperfusion. Cardiovasc. Res., 62(1):154–166. [doi:10.1016/j.cardiores.2004.01.009]

    Article  CAS  PubMed  Google Scholar 

  • Kang, S.S., Gosselin, C., Ren, D., Greisler, H.P., 1995. Selective stimulation of endothelial cell proliferation with inhibition of smooth muscle cell proliferation by fibroblast growth factor-1 plus heparin delivered from fibrin glue suspensions. Surgery, 118(2):280–287. [doi:10.1016/S0039-6060(05)80335-6]

    Article  CAS  PubMed  Google Scholar 

  • Karacal, N., Cobanoglu, U., Ambarcioglu, O., Kutlu, N., 2007. The effect of fibrin glue on fat graft survival. J. Plast. Reconstr. Aesthet. Surg., 60(3):300–303. [doi:10.1016/j.bjps.2006.03.051]

    Article  PubMed  Google Scholar 

  • Kastrup, J., Jorgensen, E., Ruck, A., Tagil, K., Glogar, D., Ruzyllo, W., Botker, H.E., Dudek, D., Drvota, V., Hesse, B., et al., 2005. Direct intramyocardial plasmid vascular endothelial growth factor-A165 gene therapy in patients with stable severe angina pectoris A randomized double-blind placebo-controlled study: the Euroinject One trial. J. Am. Coll. Cardiol., 45(7):982–988. [doi:10.1016/j.jacc.2004.12.068]

    Article  CAS  PubMed  Google Scholar 

  • Kawasuji, M., Nagamine, H., Ikeda, M., Sakakibara, N., Takemura, H., Fujii, S., Watanabe, Y., 2000. Therapeutic angiogenesis with intramyocardial administration of basic fibroblast growth factor. Ann. Thorac. Surg., 69(4): 1155–1161. [doi:10.1016/S0003-4975(99)01557-X]

    Article  CAS  PubMed  Google Scholar 

  • Kornowski, R., Fuchs, S., Leon, M.B., Epstein, S.E., 2000a. Delivery strategies to achieve therapeutic myocardial angiogenesis. Circulation, 101(4):454–458.

    CAS  PubMed  Google Scholar 

  • Kornowski, R., Baim, D.S., Moses, J.W., Hong, M.K., Laham, R.J., Fuchs, S., Hendel, R.C., Wallace, D., Cohen, D.J., Bonow, R.O., et al., 2000b. Short- and intermediate-term clinical outcomes from direct myocardial laser revascularization guided by Biosense left ventricular electromechanical mapping. Circulation, 102(10):1120–1125.

    CAS  PubMed  Google Scholar 

  • Laham, R.J., Garcia, L., Baim, D.S., Post, M., Simons, M., 1999. Therapeutic angiogenesis using basic fibroblast growth factor and vascular endothelial growth factor using various delivery strategies. Curr. Interv. Cardiol. Rep., 1(3):228–233.

    PubMed  Google Scholar 

  • Laham, R.J., Chronos, N.A., Pike, M., Leimbach, M.E., Udelson, J.E., Pearlman, J.D., Pettigrew, R.I., Whitehouse, M.J., Yoshizawa, C., Simons, M., 2000. Intracoronary basic fibroblast growth factor (FGF-2) in patients with severe ischemic heart disease: results of a phase I open-label dose escalation study. J. Am. Coll. Cardiol., 36(7):2132–2139. [doi:10.1016/S0735-1097(00)00988-8]

    Article  CAS  PubMed  Google Scholar 

  • Lopez, J.J., Edelman, E.R., Stamler, A., Hibberd, M.G., Prasad, P., Caputo, R.P., Carrozza, J.P., Douglas, P.S., Sellke, F.W., Simons, M., 1997. Basic fibroblast growth factor in a porcine model of chronic myocardial ischemia: a comparison of angiographic, echocardiographic and coronary flow parameters. J. Pharmacol. Exp. Ther., 282(1):385–390.

    CAS  PubMed  Google Scholar 

  • Phelps, E.A., Garcia, A.J., 2009. Update on therapeutic vascularization strategies. Regen. Med., 4(1):65–80. [doi: 10.2217/17460751.4.1.65]

    Article  PubMed  Google Scholar 

  • Post, M.J., Laham, R., Sellke, F.W., Simons, M., 2001. Therapeutic angiogenesis in cardiology using protein formulations. Cardiovasc. Res., 49(3):522–531. [doi:10.1016/S0008-6363(00)00216-9]

    Article  CAS  PubMed  Google Scholar 

  • Sahni, A., Odrljin, T., Francis, C.W., 1998. Binding of basic fibroblast growth factor to fibrinogen and fibrin. J. Biol. Chem., 273(13):7554–7559. [doi:10.1074/jbc.273.13.7554]

    Article  CAS  PubMed  Google Scholar 

  • Sahni, A., Khorana, A.A., Baggs, R.B., Peng, H., Francis, C.W., 2006. FGF-2 binding to fibrin(ogen) is required for augmented angiogenesis. Blood, 107(1):126–131. [doi: 10.1182/blood-2005-06-2460]

    Article  CAS  PubMed  Google Scholar 

  • Shao, Z.Q., Takaji, K., Katayama, Y., Kunitomo, R., Sakaguchi, H., Lai, Z.F., Kawasuji, M., 2006. Effects of intramyocardial administration of slow-release basic fibroblast growth factor on angiogenesis and ventricular remodeling in a rat infarct model. Circ. J., 70(4):471–477. [doi:10.1253/circj.70.471]

    Article  CAS  PubMed  Google Scholar 

  • Simons, M., Annex, B.H., Laham, R.J., Kleiman, N., Henry, T., Dauerman, H., Udelson, J.E., Gervino, E.V., Pike, M., Whitehouse, M.J., et al., 2002. Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: double-blind, randomized, controlled clinical trial. Circulation, 105(7):788–793. [doi: 10.1161/hc0802.104407]

    Article  CAS  PubMed  Google Scholar 

  • Stewart, D.J., Kutryk, M.J., Fitchett, D., Freeman, M., Camack, N., Su, Y., Della Siega, A., Bilodeau, L., Burton, J.R., Proulx, G., et al., 2009. VEGF gene therapy fails to improve perfusion of ischemic myocardium in patients with advanced coronary disease: results of the NORTHERN trial. Mol. Ther., 17(6):1109–1115. [doi:10.1038/mt.2009.70]

    Article  CAS  PubMed  Google Scholar 

  • Sutton, M.G., Sharpe, N., 2000. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation, 101(25):2981–2988.

    CAS  PubMed  Google Scholar 

  • Yamamoto, N., Kohmoto, T., Roethy, W., Gu, A., DeRosa, C., Rabbani, L.E., Smith, C.R., Burkhoff, D., 2000. Histologic evidence that basic fibroblast growth factor enhances the angiogenic effects of transmyocardial laser revascularization. Basic Res. Cardiol., 95(1):55–63. [doi: 10.1007/s003950050008]

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-ping Nie.

Additional information

Project supported by the National Natural Science Foundation of China (No. 81070166), and the Scientific Research Common Program of Beijing Municipal Commission of Education (No. KM201010 025020), China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nie, Sp., Xiao, W., Shi-bin, Q. et al. Improved myocardial perfusion and cardiac function by controlled-release basic fibroblast growth factor using fibrin glue in a canine infarct model. J. Zhejiang Univ. Sci. B 11, 895–904 (2010). https://doi.org/10.1631/jzus.B1000302

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1000302

Key words

CLC number

Navigation