Skip to main content

Advertisement

Log in

Polymorphisms in genes involved in folate metabolism as maternal risk factors for Down syndrome in China

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Objective: To explore the relationship between genetic polymorphisms in methylenetetrahydrofolate reductase (MTHFR), methionine synthase reductase (MTRR), the central enzymes in folate metabolism that affects DNA methylation and synthesis, and the risk of Down syndrome in China. Methods: Genomic DNA was isolated from the peripheral lymphocytes of 64 mothers of children with Down syndrome and 70 age matched control subjects. Polymerase chain reaction and restriction fragment length polymorphism were used to examine the polymorphisms of MTHFR 677C→T, MTRR 66A→G and the relationship between these genotypes and the risk of Down syndrome was analyzed. Results: The results show that the MTHFR 677C→T polymorphism is more prevalent among mothers of children with Down syndrome than among control mothers, with an odds ratio of 3.78 (95% confidence interval (CI), 1.78∼8.47). In addition, the homozygous MTRR 66A→G polymorphism was independently associated with a 5.2-fold increase in estimated risk (95% CI, 1.90∼14.22). The combined presence of both polymorphisms was associated with a greater risk of Down syndrome than the presence of either alone, with an odds ratio of 6.0 (95% CI, 2.058∼17.496). The two polymorphisms appear to act without a multiplicative interaction. Conclusion: MTHFR and MTRR gene mutation alleles are related to Down syndrome, and CT, TT and GG gene mutation types increase the risk of Down syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acácio, G.L., Barini, R., Bertuzzo, C.S., Couto, E.C., Annichino-Bizzacchi, J.M., Júnior, W.P., 2005. Methylene-tetrahydrofolate reductase gene polymorphisms and their association with trisomy 21. Prenat. Diagn., 25(13):1196–1199. [doi:10.1002/pd.1296]

    Article  PubMed  CAS  Google Scholar 

  • Botto, L.D., Yang, Q., 2000. 5,10-Methylenetetrahydrofolate reductase gene variants and congenital anomalies: A huge review. Am. J. Epidemiol., 151:862–877.

    PubMed  CAS  Google Scholar 

  • Boué, J., Boué, A., Lazar, P., Gueguen, S., 1975. Retrospective and prospective epidemiological studies of 1506 karotyped spontaneous abortions. Teratology, 12(1):11–26. [doi:10.1002/tera.1420120103]

    Article  PubMed  Google Scholar 

  • Brown, C.A., McKinney, K.Q., Young, K.B., Norton, H.J., 1999. The C677T methylenetetrahydrofolate reductase polymorphism influences the homocysteine-lowering effect of hormone replacement therapy. Mol. Genet. Metab., 67(1):43–48. [doi:10.1006/mgme.1999.2847]

    Article  PubMed  CAS  Google Scholar 

  • Duthie, S.J., Narayanan, S., Brand, G.M., Pirie, L., Grant, G., 2002. Impact of folate deficiency on DNA stability. J. Nutr., 132(8 Suppl.):2444S–2449S.

    PubMed  CAS  Google Scholar 

  • Edmonds, L.D., Oakley, G.P., 1981. Congenital malformations surveillance: Two American systems. Int. J. Epidemiol., 10(3):247–252. [doi:10.1093/ije/10.3.247]

    Article  PubMed  CAS  Google Scholar 

  • Engel, S.M., Olshan, A.F., Siega-Riz, A.M., Savitz, D.A., Chanock, S.J., 2006. Polymorphisms in folate metabolizing genes and risk for spontaneous preterm and small-for-gestational age birth. Am. J. Obstet. Gynecol., 195(5):1231.e1–1231.e11. [doi:10.1016/j.ajog.2006.07.024]

    Article  CAS  Google Scholar 

  • Freeman, S., Grantham, M., Hassold, T., Pettay, D., Takaesu, N., 1991. Cytogenetic and molecular studies of human spontaneous abortions. Am. J. Hum. Genet. Suppl. A, 49:9–16.

    Google Scholar 

  • García-Casal, M.N., Osorio, C., Landaeta, M., Leets, I., Matus, P., Fazzino, F., Marcos, E., 2005. High prevalence of folic acid and vitamin B12 deficiencies in infants, children, adolescents and pregnant women in Venezuela. Eur. J. Clin. Nutr., 59(9):1064–1070. [doi:10.1038/sj.ejcn.1602212]

    Article  PubMed  CAS  Google Scholar 

  • Geiman, T.M., Sankpal, U.T., Robertson, A.K., Chen, Y., Mazumdar, M., Heale, J.T., Schmiesing, J.A., Kim, W., Yokomori, K., Zhao, Y., et al., 2004. Isolation and characterization of a novel DNA methyltransferase complex linking DNMT3B with components of the mitotic chromosome condensation machinery. Nucl. Acids Res., 32(9):2716–2729. [doi:10.1093/nar/gkh589]

    Article  PubMed  CAS  Google Scholar 

  • Gomez, H.L., Santillana, S.L., Vallejos, C.S., Velarde, R., Sanchez, J., Wang, X., Bauer, N.L., Hockett, R.D., Chen, V.J., Niyikiza, C., et al., 2006. A phase II trial of pemetrexed in advanced breast cancer: Clinical response and association with molecular target expression. Clin. Cancer Res., 12(3 Pt 1):832–838. [doi:10.1158/1078-0432.CCR-05-0295]

    Article  PubMed  CAS  Google Scholar 

  • Guéant-Rodriguez, R.M., Rendeli, C., Namour, B., Venuti, L., Romano, A., Anello, G., Bosco, P., Debard, R., Gerard, P., Viola, M., et al., 2003. Transcobalamin and methionine synthase reductase mutated polymorphisms aggravate the risk of neural tube defects in humans. Neurosci. Lett., 344(3):189–192. [doi:10.1016/S0304-3940(03)00468-3]

    Article  PubMed  Google Scholar 

  • Harvey, K.J., Newport, J., 2003. CpG methylation of DNA restricts prereplication complex assembly in Xenopus egg extracts. Mol. Cell. Biol., 23(19):6769–6779. [doi:10.1128/MCB.23.19.6769-6779.2003]

    Article  PubMed  CAS  Google Scholar 

  • Hassold, T.J., Jacobs, P.A., 1984. Trisomy in man. Ann. Rev. Genet., 18(1):69–97. [doi:10.1146/annurev.ge.18.120184.000441]

    Article  PubMed  CAS  Google Scholar 

  • Hunt, P.A., Lemaire-Adkins, R., 1998. Genetic control of mammalian female meiosis. Curr. Top. Dev. Biol., 37:359–381.

    Article  PubMed  CAS  Google Scholar 

  • James, S.J., Pogribna, M., Pogribny, I.P., Melnyk, S., Hine, R.J., Gibson, J.B., Yi, P., Tafoya, D.L., Swenson, D.H., Wilson, V.L., Gaylor, D.W., 1999. Abnormal folate metabolism and mutation in the methylenetetrahydrofolate reductase (MTHFR) gene may be maternal risk factors for Down syndrome. Am. J. Clin. Nutr., 70:495–501.

    PubMed  CAS  Google Scholar 

  • James, S.J., Pogribny, I.P., Pogribna, M., Miller, B.J., Jernigan, S., Melnyk, S., 2003. Mechanisms of DNA damage, DNA hypomethylation, and tumor progression in the folate/methyl-deficient rat model of hepatocarcinogenesis. J. Nutr., 133(11 Suppl. 1):3740S–3747S.

    PubMed  CAS  Google Scholar 

  • Kim, K.H., Choi, J.S., Kim, I.J., Ku, J.L., Park, J.G., 2006. Promoter hypomethylation and reactivation of MAGE-A1 and MAGE-A3 genes in colorectal cancer cell lines and cancer tissues. World J. Gastroenterol., 12(35):5651–5657.

    PubMed  CAS  Google Scholar 

  • Ko, Y.G., Nishino, K., Hattori, N., Arai, Y., Tanaka, S., Shiota, K., 2005. Stage-by-stage change in DNA methylation status of Dnmt1 locus during mouse early development. J. Biol. Chem., 280(10):9627–9634. [doi:10.1074/jbc.M413822200]

    Article  PubMed  CAS  Google Scholar 

  • Leclerc, D., Darwich-Codore, H., Rozen, R., 2003. Characterization of a pseudogene for murine methylenetetrahydrofolate reductase. Mol. Cell Biochem., 252(1–2): 391–395. [doi:10.1023/A:1025540304067]

    Article  PubMed  CAS  Google Scholar 

  • Lezhava, T., Khavison, V., Monaselidze, J., Jokhadze, T., Dvalishvili, N., Bablishvili, N., Barbakadze, S., 2004. Bioregulator Vilon-induced reactivation of chromatin in cultured lymphocytes from old people. Biogerontology, 5(2):73–79. [doi:10.1023/B:BGEN.0000025070.90330.7f]

    Article  PubMed  CAS  Google Scholar 

  • McCaffrey, R., St Johnston, D., González-Reyes, A., 2006. Drosophila mus301/spindle-C encodes a helicase with an essential role in double-strand DNA break repair and meiotic progression. Genetics, 174(3):1273–1285. [doi:10.1534/genetics.106.058289]

    Article  PubMed  CAS  Google Scholar 

  • Mosiolek, M., Pasierbek, P., Malarz, J., Moś, M., Joachimiak, A.J., 2005. Rumex acetosa Y chromosomes: Constitutive or facultative hetero-chromatin? Folia Histochem. Cytobiol., 43(3):161–167.

    PubMed  Google Scholar 

  • Neglia, M., Bertoni, L., Zoli, W., Giulotto, E., 2003. Amplification of the pericentromeric region of chromosome 1 in a newly established colon carcinoma cell line. Cancer Genet. Cytogenet., 142(2):99–106. [doi:10.1016/S0165-4608(02)00802-6]

    Article  PubMed  Google Scholar 

  • O’Leary, V.B., Mills, J.L., Pangilinan, F., Kirke, P.N., Cox, C., Conley, M., 2005. Analysis of methionine synthase reductase polymorphisms for neural tube defects risk association. Mol. Genet. Metab., 85(3):220–227. [doi:10.1016/j.ymgme.2005.02.003]

    Article  PubMed  CAS  Google Scholar 

  • Parry, E.M., Parry, J.M., Corso, C., Doherty, A., Haddad, F., Hermine, T.F., 2002. Detection and characterization of mechanisms of action of aneugenic chemicals. Mutagenesis, 17(6):509–521. [doi:10.1093/mutage/17.6.509]

    Article  PubMed  CAS  Google Scholar 

  • Pilsner, J.R., Liu, X., Ahsan, H., Ilievski, V., Slavkovich, V., Levy, D., 2007. Genomic methylation of peripheral blood leukocyte DNA: Influences of arsenic and folate in Bangladeshi adults. Am. J. Clin. Nutr., 86(4):1179–1186.

    PubMed  CAS  Google Scholar 

  • Pogribny, I.P., James, S.J., Jernigan, S., Pogribna, M., 2004. Genomic hypomethylation is specific for preneoplastic liver in folate/methyl deficient rats and does not occur in non-target tissues. Mutat. Res., 548(1–2):53–59.

    PubMed  CAS  Google Scholar 

  • Ramírez, N.J., Belalcázar, H.M., Yunis, J.J., Quintero, L.N., Arboleda, G.H., Arboleda, H., 2007. Parental origin, nondisjunction, and recombination of the extra chromosome 21 in Down syndrome: A study in a sample of the Colombian population. Biomedica, 27(1):141–148.

    PubMed  Google Scholar 

  • Rosenblatt, D.S., 1999. Folate and homocysteine metabolism and gene polymorphisms in the etiology of Down syndrome. Am. J. Clin. Nutr., 70:429–430.

    PubMed  CAS  Google Scholar 

  • Smith, G., Berg, J., 1995. Down’s Anomaly, 2nd Ed. Churchill Livingstone, Edinburgh and New York.

    Google Scholar 

  • Valinluck, V., Tsai, H.H., Rogstad, D.K., Burdzy, A., Bird, A., Sowers, L.C., 2004. Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic. Acids Res., 32(14):4100–4108. [doi:10.1093/nar/gkh739]

    Article  PubMed  CAS  Google Scholar 

  • van der Linden, I.J., den Heijer, M., Afman, L.A., Gellekink, H., Vermeulen, S.H., Kluijtmans, L.A., 2006. The methionine synthase reductase 66A→G polymorphism is a maternal risk factor for spina bifida. J. Mol. Med., 84(12):1047–1054. [doi:10.1007/s00109-006-0093-x]

    Article  PubMed  CAS  Google Scholar 

  • Warburton, D., 2005. Biological aging and the etiology of aneuploidy. Cytogenet. Genome Res., 111(3–4):266–272. [doi:10.1159/000086899]

    Article  PubMed  CAS  Google Scholar 

  • Zijno, A., Andreoli, C., Leopardi, P., Marcon, F., Rossi, S., Caiola, S., Verdina, A., Galati, R., Cafolla, A., Crebelli, R., 2003. Folate status, metabolic genotype, and biomarkers of genotoxicity in healthy subjects. Carcinogenesis, 24(6):1097–1103. [doi:10.1093/carcin/bgg064]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-shuai Wang.

Additional information

Project (No. 2003ABA148) supported by the Science Foundation of Hubei Province, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Ss., Qiao, Fy., Feng, L. et al. Polymorphisms in genes involved in folate metabolism as maternal risk factors for Down syndrome in China. J. Zhejiang Univ. Sci. B 9, 93–99 (2008). https://doi.org/10.1631/jzus.B0710599

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B0710599

Key words

Document code

CLC number

Navigation