Skip to main content
Log in

An efficient prediction framework for multi-parametric yield analysis under parameter variations

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Due to continuous process scaling, process, voltage, and temperature (PVT) parameter variations have become one of the most problematic issues in circuit design. The resulting correlations among performance metrics lead to a significant parametric yield loss. Previous algorithms on parametric yield prediction are limited to predicting a single-parametric yield or performing balanced optimization for several single-parametric yields. Consequently, these methods fail to predict the multi-parametric yield that optimizes multiple performance metrics simultaneously, which may result in significant accuracy loss. In this paper we suggest an efficient multi-parametric yield prediction framework, in which multiple performance metrics are considered as simultaneous constraint conditions for parametric yield prediction, to maintain the correlations among metrics. First, the framework models the performance metrics in terms of PVT parameter variations by using the adaptive elastic net (AEN) method. Then the parametric yield for a single performance metric can be predicted through the computation of the cumulative distribution function (CDF) based on the multiplication theorem and the Markov chain Monte Carlo (MCMC) method. Finally, a copula-based parametric yield prediction procedure has been developed to solve the multi-parametric yield prediction problem, and to generate an accurate yield estimate. Experimental results demonstrate that the proposed multi-parametric yield prediction framework is able to provide the designer with either an accurate value for parametric yield under specific performance limits, or a multi-parametric yield surface under all ranges of performance limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banerjee, A., Chatterjee, A., 2015. Signature driven hierar-chical post-manufacture tuning of RF systems for per-formance and power. IEEE Trans. VLSI Syst., 23(2):342–355. http://dx.doi.org/10.1109/TVLSI.2014.2309114

    Article  Google Scholar 

  • Bayrakci, A.A., 2015. Stochastic logical effort as a variation aware delay model to estimate timing yield. Integr. VLSI J., 48(1):101–108. http://dx.doi.org/10.1016/j.vlsi.2014.07.003

    Article  Google Scholar 

  • Binois, M., Rullière, D., Roustant, O., 2015. On the estimation of Pareto fronts from the point of view of copula theory. Inform. Sci., 324:270–285. http://dx.doi.org/10.1016/j.ins.2015.06.037

    Article  Google Scholar 

  • Haghdad, K., Anis, M., 2012. Timing yield analysis consider-ing process-induced temperature and supply voltage variations. Microelectron. J., 43(12):956–961. http://dx.doi.org/10.1016/j.mejo.2012.07.014

    Article  Google Scholar 

  • Houda, M., Lisser, A., 2015. Archimedean copulas in joint chance-constrained programming. Commun. Comput. Inform. Sci., 509:126–139. http://dx.doi.org/10.1007/978-3-319-17509-6_9

    Article  Google Scholar 

  • Huang, B., Du, X., 2008. Probabilistic uncertainty analysis by mean-value first order Saddlepoint approximation. Reliab. Eng. Syst. Safety, 93(2):325–336. http://dx.doi.org/10.1016/j. ress.2006.10.021

    Article  Google Scholar 

  • Hwang, E.J., Kim, W., Kim, Y.H., 2013. Timing yield slack for timing yield-constrained optimization and its application to statistical leakage minimization. IEEE Trans. VLSI Syst., 21(10):1783–1796. http://dx.doi.org/10.1109/TVLSI.2012.2220792

    Article  Google Scholar 

  • Jin, Y.J., 2013. Reliability-based sensitivity analysis for ma-chining precision by saddle-point approximation. Appl. Mech. Mater., 241-244:280–283. http://dx.doi.org/10.4028/www.scientific.net/AMM.241-244.280

    Article  Google Scholar 

  • Kaneda, S., Mizumoto, T., Maeno, T., et al., 2015. A cross validation of network system models for delay tolerant networks. Int. Conf. on Mobile Computing and Ubiqui-tous Networking, p.185–190. http://dx.doi.org/10.1109/ICMU.2015.7061064

    Google Scholar 

  • Kao, S.C., Govindaraju, R.S., 2008. Trivariate statistical analysis of extreme rainfall events via the Plackett family of copulas. Water Resources Res., 44(2):333–341. http://dx.doi.org/10.1029/2007WR006261

    Article  Google Scholar 

  • Kim, G., Silvapulle, M.J., Silvapulle, P., 2007. Comparison of semiparametric and parametric methods for estimating copulas. Comput. Statist. Data Anal., 51(6):2836–2850. http://dx.doi.org/10.1016/j.csda.2006.10.009

    Article  MathSciNet  Google Scholar 

  • Kondamadugula, S., Naidu, S.R., 2016. Parameter-importance based Monte-Carlo technique for variation-aware analog yield optimization. Proc. 26th edition on Great Lakes Symp. on VLSI, p.51–56. http://dx.doi.org/10.1145/2902961.2903018

    Chapter  Google Scholar 

  • Lan, W., Wang, H., Tsai, C., 2012. A Bayesian information criterion for portfolio selection. Comput. Statist. Data Anal., 56(1):88–99. http://dx.doi.org/10.1016/j.csda.2011.06.012

    Article  MathSciNet  Google Scholar 

  • Li, X., 2010. Finding deterministic solution from underdeter-mined equation: large-scale performance variability modeling of analog/RF circuits. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst., 29(11):1661–1668. http://dx.doi.org/10.1109/TCAD.2010.2061292

    Article  Google Scholar 

  • Li, X., Sun, J., Xiao, F., et al., 2016. An efficient bi-objective optimization framework for statistical chip-level yield analysis under parameter variations. Front. Inform. Technol. Electron. Eng., 17(2):160–172. http://dx.doi.org/10.1631/FITEE.1500168

    Article  Google Scholar 

  • Liu, X., Tan, S.X.D., Palma-Rodriguez, A.A., et al., 2013. Performance bound analysis of analog circuits in frequency-and time-domain considering process varia-tions. ACM Trans. Des. Autom. Electron. Syst., 19(1):6. http://dx.doi.org/10.1145/2534395

    Article  Google Scholar 

  • Mande, S.S., Chandorkar, A.N., Iwai, H., 2013. Computation-ally efficient methodology for statistical characterization and yield estimation due to inter-and intra-die process variations. Proc. 5th Asia Symp. on Quality Electronic Design, p.287–294. http://dx.doi.org/10.1109/ASQED.2013.6643602

    Google Scholar 

  • Nateghi, H., El-Sankary, K., 2015. A self-healing technique using ZTC biasing for PVT variations compensation in 65nm CMOS technology. Canadian Conf. on Electrical and Computer Engineering, p.128–131. http://dx.doi.org/10.1109/CCECE.2015.7129173

    Google Scholar 

  • Nelson, R.B., 2006. An Introduction to Copulas. Springer, New York. http://dx.doi.org/10.1007/0-387-28678-0

    Google Scholar 

  • Panchal, G., Ganatra, A., Kosta, Y.P., et al., 2010. Searching most efficient neural network architecture using Akaike’s information criterion (AIC). Int. J. Comput. Appl., 1(5):41–44. http://dx.doi.org/10.5120/126-242

    Google Scholar 

  • Radfar, M., Singh, J., 2014. A yield improvement technique in severe process, voltage, and temperature variations and extreme voltage scaling. Microelectron. Reliab., 54(12):2813–2823. http://dx.doi.org/10.1016/j.microrel.2014.07.138

    Article  Google Scholar 

  • Srivastava, A., Chopra, K., Shah, S., et al., 2008. A novel approach to perform gate-level yield analysis and opti-mization considering correlated variations in power and performance. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst., 27(2):272–285. http://dx.doi.org/10.1109/TCAD.2007.907227

    Article  Google Scholar 

  • Sun, J., Li, J., Ma, D., et al., 2008. Chebyshev affine-arithmetic-based parametric yield prediction under lim-ited descriptions of uncertainty. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst., 27(10):1852–1865. http://dx.doi.org/10.1109/TCAD.2008.2003300

    Article  Google Scholar 

  • Tang, A., Jha, N.K., 2016. GenFin: genetic algorithm-based multiobjective statistical logic circuit optimization using incremental statistical analysis. IEEE Trans. VLSI Syst., 24(3):1126–1139. http://dx.doi.org/10.1109/TVLSI.2015.2442260

    Article  Google Scholar 

  • Tlelo-Cuautle, E., Sanabria-Borbon, A.C., 2016. Optimising operational amplifiers by evolutionary algorithms and gm/Id method. Int. J. Electron., 103(10):1665–1684. http://dx.doi.org/10.1080/00207217.2016.1138522

    Article  Google Scholar 

  • Trejo-Guerra, R., Tlelo-Cuautle, E., Jiménez-Fuentes, J.M., et al., 2012. Integrated circuit generating 3-and 5-scroll attractors. Commun. Nonl. Sci. Numer. Simul., 17(11):4328–4335. http://dx.doi.org/10.1016/j.cnsns.2012.01.029

    Article  MathSciNet  Google Scholar 

  • Visweswariah, C., 2003. Death, taxes and failing chips. Proc. 40th Annual Design Automation Conf., p.343–347. http://dx.doi.org/10.1145/775919.775921

    Google Scholar 

  • Wang, D., Hutson, A.D., 2015. Inversion theorem based kernel density estimation for the ordinary least squares estimator of a regression coefficient. Commun. Statist. Theory Methods, 44(8):1571–1579. http://dx.doi.org/10.1080/03610926.2013.781633

    Article  MathSciNet  Google Scholar 

  • Xu, F., Li, C., Jiang, T., 2015. Printed circuit board model updating based on response surface method. J. Beijing Univ. Aeronaut. Astronaut., 41(3):449–455 (in Chinese).

    Google Scholar 

  • Yuan, X., 2009. Application Research of Markov Chain Sim-ulation in Reliability Analysis. PhD Thesis, Northwestern Polytechnical University, Xi’an, China (in Chinese).

    Google Scholar 

  • Yuan, X.K., Lu, Z.Z., Qiao, H.W., 2010. Conditional proba-bility Markov chain simulation based reliability analysis method for nonnormal variables. Sci. China Technol. Sci., 53(5):1434–1441. http://dx.doi.org/10.1007/ s11431-010-0138-9

    Article  MathSciNet  Google Scholar 

  • Zhang, H., Zamar, R.H., 2014. Least angle regression for model selection. Wiley Interdiscipl. Rev. Comput. Statist., 6(2):116–123. http://dx.doi.org/10.1002/wics.1288

    Article  Google Scholar 

  • Zou, H., 2006. The adaptive Lasso and its Oracle properties. J. Am. Statist. Assoc., 101(476):1418–1429. http://dx.doi.org/10.1198/016214506000000735

    Article  MathSciNet  Google Scholar 

  • Zou, H., Zhang, H.H., 2009. On the adaptive elastic-net with a diverging number of parameters. Ann. Statist., 37(4):1733–1751. http://dx.doi.org/10.1214/08-AOS625

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Li.

Additional information

Project supported by the Natural Science Foundation of Jiangsu Province (Nos. BK20161072, BK20150785, and BK20130877) and the National Natural Science Foundation of China (Nos. 61502234 and 71301081)

ORCID: Xin LI, http://orcid.org/0000-0002-4859-2477

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Sun, J. & Xiao, F. An efficient prediction framework for multi-parametric yield analysis under parameter variations. Frontiers Inf Technol Electronic Eng 17, 1344–1359 (2016). https://doi.org/10.1631/FITEE.1601225

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1601225

Key words

CLC number

Navigation