Skip to main content
Log in

Filtering and tracking with trinion-valued adaptive algorithms

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

A new model for three-dimensional processes based on the trinion algebra is introduced for the first time. Compared to the pure quaternion model, the trinion model is more compact and computationally more efficient, while having similar or comparable performance in terms of adaptive linear filtering. Moreover, the trinion model can effectively represent the general relationship of state evolution in Kalman filtering, where the pure quaternion model fails. Simulations on real-world wind recordings and synthetic data sets are provided to demonstrate the potential of this new modeling method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adali, T., Schreier, P.J., 2014. Optimization and estimation of complex-valued signals: theory and applications in filtering and blind source separation. IEEE Signal Process. Mag., 31(5):112–128. http://dx.doi.org/10.1109/MSP.2013.2287951

    Article  Google Scholar 

  • Allenby, R.B., 1991. Rings, Fields and Groups: Introduction to Abstract Algebra (Modular Mathematics Series). Elsevier Limited.

    MATH  Google Scholar 

  • Assefa, D., Mansinha, L., Tiampo, K.F., et al., 2011. The trinion Fourier transform of color images. Signal Process., 91(8):1887–1900. http://dx.doi.org/10.1016/j.sigpro.2011.02.011

    Article  Google Scholar 

  • Barthélemy, Q., Larue, A., Mars, J.I., 2014. About QLMS derivations. IEEE Signal Process. Lett., 21(2):240–243. http://dx.doi.org/10.1109/LSP.2014.2299066

    Article  Google Scholar 

  • Brandwood, D.H., 1983. A complex gradient operator and its application in adaptive array theory. IEE Proc. H, 130(1):11–16.

    MathSciNet  Google Scholar 

  • Chui, C.K., Chen, G.R., 1991. Kalman Filtering. Springer- Verlag, Berlin.

    Book  Google Scholar 

  • Ell, T.A., Le Bihan, N., Sangwine, S.J., 2014. Quaternion Fourier Transforms for Signal and Image Processing. Wiley.

    Book  Google Scholar 

  • Gou, X., Liu, Z., Liu, W., et al., 2015. Three-dimensional wind profile prediction with trinion-valued adaptive algorithms. Proc. IEEE Int. Conf. on Digital Signal Processing, p.566–569. http://dx.doi.org/10.1109/ICDSP.2015.7251937

    Google Scholar 

  • Hawes, M., Liu, W., 2015. Design of fixed beamformers based on vector-sensor arrays. Int. J. Antenn. Propag., 2015:181937.1-181937.9. http://dx.doi.org/10.1155/2015/181937

    Article  Google Scholar 

  • Haykin, S., Widrow, B., 2003. Least-Mean-Square Adaptive Filters. John Wiley & Sons, New York.

    Book  Google Scholar 

  • Isaeva, O.M., Sarytchev, V.A., 1995. Quaternion presentations polarization state. Proc. 2nd IEEE Topical Symp. on Combined Optical-Microwave Earth and Atmosphere Sensing, p.195–196. http://dx.doi.org/10.1109/COMEAS.1995.472367

    Chapter  Google Scholar 

  • Jahanchahi, C., Mandic, D.P., 2014. A class of quaternion Kalman filters. IEEE Trans. Neur. Netw. Learn. Syst., 25(3):533–544. http://dx.doi.org/10.1109/TNNLS.2013.2277540

    Article  Google Scholar 

  • Jiang, M.D., Liu, W., Li, Y., 2014. A general quaternionvalued gradient operator and its applications to computational fluid dynamics and adaptive beamforming. Proc. 19th Int. Conf. on Digital Signal Processing, p.821–826. http://dx.doi.org/10.1109/ICDSP.2014.6900781

    Google Scholar 

  • Jiang, M.D., Li, Y., Liu, W., 2016a. Properties of a general quaternion-valued gradient operator and its applications to signal processing. Front. Inform. Technol. Electron. Eng., 17(2):83–95. http://dx.doi.org/10.1631/FITEE.1500334

    Article  Google Scholar 

  • Jiang, M.D., Liu, W., Li, Y., 2016b. Adaptive beamforming for vector-sensor arrays based on a reweighted zeroattracting quaternion-valued LMS algorithm. IEEE Trans. Circ. Syst. II, 63(3):274–278. http://dx.doi.org/10.1109/TCSII.2015.2482464

    Google Scholar 

  • Kantor, I.L., Solodovnikov, A.S., 1989. Hypercomplex Numbers: an Elementary Introduction to Algebras. Springer-Verlag, New York.

    Book  Google Scholar 

  • Le Bihan, N., Mars, J., 2004. Singular value decomposition of quaternion matrices: a new tool for vector-sensor signal processing. Signal Process., 84(7):1177–1199. http://dx.doi.org/10.1016/j.sigpro.2004.04.001

    Article  Google Scholar 

  • Le Bihan, N., Miron, S., Mars, J.I., 2007. MUSIC algorithm for vector-sensors array using biquaternions. IEEE Trans. Signal Process., 55(9):4523–4533. http://dx.doi.org/10.1109/TSP.2007.896067

    Article  MathSciNet  Google Scholar 

  • Li, T.C., Villarrubia, G., Sun, S.D., et al., 2015. Resampling methods for particle filtering: identical distribution, a new method, and comparable study. Front. Inform. Technol. Electron. Eng., 16(11):969–984. http://dx.doi.org/10.1631/FITEE.1500199

    Article  Google Scholar 

  • Liu, H., Zhou, Y.L., Gu, Z.P., 2014. Inertial measurement unit-camera calibration based on incomplete inertial sensor information. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 15(11):999–1008. http://dx.doi.org/10.1631/jzus.C1400038

    Article  Google Scholar 

  • Liu, W., 2014. Antenna array signal processing for quaternion-valued wireless communication system. Proc. IEEE Benjamin Franklin Symp. on Microwave and Antenna Sub-systems, p.1–3.

    Google Scholar 

  • Miron, S., Le Bihan, N., Mars, J.I., 2006. Quaternion-MUSIC for vector-sensor array processing. IEEE Trans. Signal Process., 54(4):1218–1229. http://dx.doi.org/10.1109/TSP.2006.870630

    Article  Google Scholar 

  • Parfieniuk, M., Petrovsky, A., 2010. Inherently lossless structures for eight- and six-channel linear-phase paraunitary filter banks based on quaternion multipliers. Signal Process., 90(6):1755–1767. http://dx.doi.org/10.1016/j.sigpro.2010.01.008

    Article  Google Scholar 

  • Pei, S.C., Cheng, C.M., 1999. Color image processing by using binary quaternion-moment-preserving thresholding technique. IEEE Trans. Image Process., 8(5):614–628. http://dx.doi.org/10.1109/83.760310

    Article  Google Scholar 

  • Pei, S.C., Chang, J.H., Ding, J.J., 2004. Commutative reduced biquaternions and their Fourier transform for signal and image processing applications. IEEE Trans. Signal Process., 52(7):2012–2031. http://dx.doi.org/10.1109/TSP.2004.828901

    Article  MathSciNet  Google Scholar 

  • Sangwine, S.J., Ell, T.A., Blackledge, J.M., et al., 2000. The discrete Fourier transform of a colour image. Proc. Image Processing II: Mathematical Methods, Algorithms and Applications, p.430–441.

    Google Scholar 

  • Talebi, S.P., Mandic, D.P., 2015. A quaternion frequency estimator for three-phase power systems. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.3956–3960. http://dx.doi.org/10.1109/ICASSP.2015.7178713

    Google Scholar 

  • Tao, J.W., 2013. Performance analysis for interference and noise canceller based on hypercomplex and spatiotemporal-polarisation processes. IET Radar Sonar Navig., 7(3):277–286. http://dx.doi.org/10.1049/iet-rsn.2012.0151

    Article  Google Scholar 

  • Tao, J.W., Chang, W.X., 2014. Adaptive beamforming based on complex quaternion processes. Math. Prob. Eng., 2014:291249.1-291249.10. http://dx.doi.org/10.1155/2014/291249

    Google Scholar 

  • Ward, J.P., 1997. Quaternions and Cayley Numbers: Algebra and Applications. Springer, the Netherlands. http://dx.doi.org/10.1007/978-94-011-5768-1

    Book  Google Scholar 

  • Zetterberg, L., Brandstrom, H., 1977. Codes for combined phase and amplitude modulated signals in a fourdimensional space. IEEE Trans. Commun., 25(9):943–950. http://dx.doi.org/10.1109/TCOM.1977.1093927

    Article  Google Scholar 

  • Zhang, X.R., Liu, W., Xu, Y.G., et al., 2014. Quaternionvalued robust adaptive beamformer for electromagnetic vector-sensor arrays with worst-case constraint. Signal Process., 104:274–283. http://dx.doi.org/10.1016/j.sigpro.2014.04.006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 61331019 and 61490691), the China Scholarship Council Postgraduate Scholarship Program (2014), and the National Grid (UK)

A preliminary version was presented at the IEEE International Conference on Digital Signal Processing, Singapore, July 21–24, 2015

ORCID: Wei LIU, http://orcid.org/0000-0003-2968-2888

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gou, Xm., Liu, Zw., Liu, W. et al. Filtering and tracking with trinion-valued adaptive algorithms. Frontiers Inf Technol Electronic Eng 17, 834–840 (2016). https://doi.org/10.1631/FITEE.1601164

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1601164

Keywords

CLC number

Navigation