Skip to main content
Log in

Electrical analysis of single-walled carbon nanotube as gigahertz on-chip interconnects

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

The single-walled carbon nanotube (SWCNT) is a promising nanostructure in the design of future high-frequency system-on-chip, especially in network-on-chip, where the quality of communication between intellectual property (IP) modules is a major concern. Shrinking dimensions of circuits and systems have restricted the use of high-frequency signal characteristics for frequencies up to 1000 GHz. Four key electrical parameters, impedance, propagation constant, current density, and signal delay time, which are crucial in the design of a high-quality interconnect, are derived for different structural configurations of SWCNT. Each of these parameters exhibits strong dependence on the frequency range over which the interconnect is designed to operate, as well as on the configuration of SWCNT. The novelty of the proposed model for solving next-generation high-speed integrated circuit (IC) interconnect challenges is illustrated, compared with existing theoretical and experimental results in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan, A., Edenfeld, D., Joyner, W.H., et al., 2002. 2001 technology roadmap for semiconductors. Computer, 35(1):42–53. http://dx.doi.org/10.1109/2.976918

    Article  Google Scholar 

  • Anantram, M.P., Léonard, F., 2006. Physics of carbon nanotube electronic devices. Rep. Prog. Phys., 69(3):507–561. http://dx.doi.org/10.1088/0034-4885/69/3/R01

    Article  Google Scholar 

  • Baughman, R.H., Zakhidov, A.A., de Heer, W.A., 2002. Carbon nanotubes—the route toward applications. Science, 297(5582):787–792. http://dx.doi.org/10.1126/science.1060928

    Article  Google Scholar 

  • Burke, P.J., 2002a. Lüttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Trans. Nanotechnol., 1(3):129–144. http://dx.doi.org/10.1109/TNANO.2002.806823

    Article  MathSciNet  Google Scholar 

  • Burke, P.J., 2002b. An RFcircuit model for carbon nanotubes. Proc. 2nd IEEE Conf. on Nanotechnology, p.393–396. http://dx.doi.org/10.1109/NANO.2002.1032273

    Chapter  Google Scholar 

  • Cursaru, D., Enescu, D., Ciuparu, D., 2011. Control of (n, m) selectivity in single wall carbon nanotubes (SWNT) growth by varying the Co-Ni ratio in bi-metallic Co-Ni-MCM 41 catalysts. Rev. Chim.-Bucharest, 62(7):792–798.

    Google Scholar 

  • Dragoman, M., Grenier, K., Dubuc, D., et al., 2006. Experimental determination of microwave attenuation and electrical permittivity of double-walled carbon nanotubes. Appl. Phys. Lett., 8(15):1–3. http://dx.doi.org/10.1063/1.2193464

    Google Scholar 

  • Fagan, A.J., Hároz, E.H., Ihly, R., et al., 2015. Isolation of >1 nm diameter single-wall carbon nanotube species using aqueous two-phase extraction. ACS Nano, 9(5):5377–5390. http://dx.doi.org/10.1021/acsnano.5b01123

    Article  Google Scholar 

  • Galand, R., Brunetti, G., Arnaud, L., et al., 2013. Microstructural void environment characterization by electron imaging in 45 nm technology node to link electromigration and Copper microstructure. Microelectron. Eng., 106:168–171. http://dx.doi.org/10.1016/j.mee.2013.01.018

    Article  Google Scholar 

  • Huang, C.Y., Hu, C.Y., Pan, H.C., et al., 2005. Electrooptical responses of carbon nanotube-doped liquid crystal devices. Jpn. J. Appl. Phys., 44(11):8077–8081. http://dx.doi.org/10.1143/JJAP.44.8077

    Article  Google Scholar 

  • Iqbal, M.Z., Puigdemont, J.P., Eom, J., et al., 2014. Highfrequency impedance of single-walled carbon nanotube networks on transparent flexible substrate. Phys. Status Sol. B, 251(12):2461–2465. http://dx.doi.org/10.1002/pssb.201451233

    Article  Google Scholar 

  • Ismail, Y., Friedman, E.G., Neves, J.L., 2000. Equivalent Elmore delay for RLC trees. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst., 19(1):83–97. http://dx.doi.org/10.1109/43.822622

    Article  Google Scholar 

  • Jespersen, T.S., Nygård, J., 2005. Charge trapping in carbon nanotube loops demonstrated by electrostatic force microscopy. Nano Lett., 5(9):1838–1841. http://dx.doi.org/10.1021/nl0505997

    Article  Google Scholar 

  • Journet, C., Maser, W.K., Bernier, P., et al., 1997. Largescale production of single-walled carbon nanotubes by the electric-arc technique. Nature, 388(6644):756–758. http://dx.doi.org/10.1038/41972

    Article  Google Scholar 

  • Kane, C., Balents, L., Fisher, M.P., 1997. Coulomb interactions and mesoscopic effects in carbon nanotubes. Phys. Rev. Lett., 79(25):5086–5089. http://dx.doi.org/10.1103/PhysRevLett.79.5086

    Article  Google Scholar 

  • Kreupl, F., 2008. Carbon nanotubes in microelectronic applications. In: Hierold, C., Brand, O., Fedder, G.K. (Eds.), Carbon Nanotube Devices: Properties, Modelling, Integration and Applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, p.1–42. http://dx.doi.org/10.1002/9783527622597.ch1

    Google Scholar 

  • Liang, F., Wang, G., Ding, W., 2011. Estimation of time delay and repeater insertion in multiwall carbon nanotube interconnects. IEEE Trans. Electron. Dev., 58(8):2712–2720. http://dx.doi.org/10.1109/TED.2011.2154334

    Article  Google Scholar 

  • Liu, C., Cheng, H.M., 2013. Carbon nanotubes: controlled growth and application. Mater. Today, 16(1-2):19–28. http://dx.doi.org/10.1016/j.mattod.2013.01.019

    Article  Google Scholar 

  • McEuen, P.L., Fuhrer, M.S., Park, H., 2002. Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol., 99(1):78–85. http://dx.doi.org/10.1109/TNANO.2002.1005429

    Article  Google Scholar 

  • Nieuwoudt, A., Massoud, Y., 2006. Understanding the impact of inductance in carbon nanotube bundles for VLSI interconnect using scalable modeling techniques. IEEE Trans. Nanotechnol., 5(6):758–765. http://dx.doi.org/10.1109/TNANO.2006.883480

    Article  Google Scholar 

  • Nihei, M., Horibe, M., Kawabata, A., et al., 2004. Carbon nanotube vias for future LSI interconnects. Proc. IEEE Int. Interconnect Technology Conf., p.251–253. http://dx.doi.org/10.1109/IITC.2004.1345767

    Google Scholar 

  • Ounaies, Z., Park, C., Wise, K.E., et al., 2003. Electrical properties of single wall carbon nanotube reinforced polyimide composites. Compos. Sci. Technol., 63(11):1637–1646. http://dx.doi.org/10.1016/S0266-3538(03)00067-8

    Article  Google Scholar 

  • Srivastava, N., Banarjee, K., 2005. Performance analysis of carbon nanotube interconnects for VLSI applications. IEEE/ACM Int. Conf. Computer-Aided Design, p.383–390. http://dx.doi.org/10.1109/ICCAD.2005.1560098

    Google Scholar 

  • Srivastava, N., Li, H., Kreupl, F., et al., 2009. On the applicability of single-walled carbon nanotubes as VLSI interconnects. IEEE Trans. Nanotechnol., 8(4):542–559. http://dx.doi.org/10.1109/TNANO.2009.2013945

    Article  Google Scholar 

  • Thess, A., Lee, R., Nikolaev, P., et al., 1996. Crystalline ropes of metallic carbon nanotubes. Science, 273(5274):483–487. http://dx.doi.org/10.1126/science.273.5274.483

    Article  Google Scholar 

  • Yuzvinsky, T.D., Mickelson, W., Aloni, S., et al., 2006. Shrinking a carbon nanotube. Nano Lett., 6(12):2718–2722. http://dx.doi.org/10.1021/nl061671j

    Article  Google Scholar 

  • Zhao, Y.P., Wei, B.Q., Ajayan, P.M., et al., 2001. Frequencydependent electrical transport in carbon nanotubes. Phys. Rev. B, 64(20):201402. http://dx.doi.org/10.1103/PhysRevB.64.201402

    Article  Google Scholar 

  • Zhou, Y., Sreekala, S., Ajayan, P.M., et al., 2008. Resistance of copper nanowires and comparison with carbon nano-tube bundles for interconnect applications using first principles calculations. J. Phys.-Condens. Matter, 20(9):1–5. http://dx.doi.org/10.1088/0953-8984/20/9/095209

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zamshed Iqbal Chowdhury.

Additional information

ORCID: Zamshed Iqbal CHOWDHURY, http://orcid.org/0000-0002-4096-7000

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, Z.I., Rahaman, M.I. & Kaiser, M.S. Electrical analysis of single-walled carbon nanotube as gigahertz on-chip interconnects. Frontiers Inf Technol Electronic Eng 18, 262–271 (2017). https://doi.org/10.1631/FITEE.1500349

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500349

Keywords

CLC number

Navigation