Skip to main content
Log in

Animage-based approach to the reconstruction of ancient architectures by extracting and arranging 3D spatial components

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

The objective of this research is the rapid reconstruction of ancient buildings of historical importance using a single image. The key idea of our approach is to reduce the infinite solutions that might otherwise arise when recovering a 3D geometry from 2D photographs. The main outcome of our research shows that the proposed methodology can be used to reconstruct ancient monuments for use as proxies for digital effects in applications such as tourism, games, and entertainment, which do not require very accurate modeling. In this article, we consider the reconstruction of ancient Mughal architecture including the Taj Mahal. We propose a modeling pipeline that makes an easy reconstruction possible using a single photograph taken from a single view, without the need to create complex point clouds from multiple images or the use of laser scanners. First, an initial model is automatically reconstructed using locally fitted planar primitives along with their boundary polygons and the adjacency relation among parts of the polygons. This approach is faster and more accurate than creating a model from scratch because the initial reconstruction phase provides a set of structural information together with the adjacency relation, which makes it possible to estimate the approximate depth of the entire structural monument. Next, we use manual extrapolation and editing techniques with modeling software to assemble and adjust different 3D components of the model. Thus, this research opens up the opportunity for the present generation to experience remote sites of architectural and cultural importance through virtual worlds and real-time mobile applications. Variations of a recreated 3D monument to represent an amalgam of various cultures are targeted for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AlHalawani, S., Yang, Y.L., Liu, H., et al., 2013. Interactive facades analysis and synthesis of semi-regular facades. Comput. Graph. Forum, 32(2pt2):215–224. [doi:10.1111/cgf.12041]

    Article  Google Scholar 

  • Bao, F., Yan, D.M., Mitra, N.J., et al., 2013. Generating and exploring good building layouts. ACM Trans. Graph., 32(4):122.1–122.10. [doi:10.1145/2461912.2461977]

    Article  Google Scholar 

  • Bay, H., Tuytelaars, T., van Gool, L., 2006. SURF: speeded up robust features. Proc. 9th European Conf. on Computer Vision, p.404–417. [doi:10.1007/11744023_32]

    Google Scholar 

  • Bokeloh, M., Berner, A., Wand, M., et al., 2009. Symmetry detection using feature lines. Comput. Graph. Forum, 28(2):697–706. [doi:10.1111/j.1467-8659.2009.01410.x]

    Article  Google Scholar 

  • Ceylan, D., Mitra, N.J., Li, H., et al., 2012. Factored facade acquisition using symmetric line arrangements. Comput. Graph. Forum, 31(2pt3):671–680. [doi:10.1111/j.1467-8659.2012.03046.x]

    Article  Google Scholar 

  • Ceylan, D., Mitra, N.J., Zheng, Y., et al., 2014. Coupled structure-from-motion and 3D symmetry detection for urban facades. ACM Trans. Graph., 33(1):2.1–2.15. [doi:10.1145/2517348]

    Article  Google Scholar 

  • Chen, E., Williams, L., 1993. View interpolation for image synthesis. Proc. 20th Annual Conf. on Computer Graphics and Interative Techniques, p.279–288. [doi:10.1145/166117.166153]

    Google Scholar 

  • Chen, T., Zhu, Z., Shamir, A., et al., 2013. 3-Sweep: extruding editable objects from a single photo. ACM Trans. Graph., 32(6):195.1–195.10. [doi:10.1145/2508363.2508378]

    Google Scholar 

  • Çıçek, A., Gülesñ, M., 2004. Reconstruction of 3D models from 2D orthographic views using solid extrusion and revolution. J. Mater. Process. Technol., 152(3):291–298. [doi:10.1016/j.jmatprotec.2004.04.368]

    Article  Google Scholar 

  • Cignoni, P., Rocchini, C., Scopigno, R., 1998. Metro: measuring error on simplified surfaces. Comput. Graph. Forum, 17(2):167–174. [doi:10.1111/1467-8659.00236]

    Article  Google Scholar 

  • Criminisi, A., Reid, I., Zisserman, A., 2000. Single view metrology. Int. J. Comput. Vis., 40(2):123–148. [doi:10.1023/A:1026598000963]

    Article  MATH  Google Scholar 

  • Davies, E.R., 2005. Machine Vision: Theory, Algorithms, Practicalities. Morgan Kauffman Press, San Francisco, USA.

    Google Scholar 

  • Debevec, P.E., Taylor, C.J., Malik, J., 1996. Modeling and rendering architecture from photographs: a hybrid geometry- and image-based approach. Proc. 23rd Annual Conf. on Computer Graphics and Interative Techniques, p.11–20. [doi:10.1145/237170.237191]

    Google Scholar 

  • Dung, L.R., Huang, C.M., Wu, Y.Y., 2013. Implementation of RANSAC algorithm for feature-based image registration. J. Comput. Commun., 1:46–50. [doi:10.4236/jcc.2013.16009]

    Article  Google Scholar 

  • Encyclopedia, 2014. Mughal Architecture, Britannica Online. Available from http://global.britannica.com/EBchecked/topic/396119/Mughal-architecture [Accessed on Dec. 11, 2014].

    Google Scholar 

  • Faugeras, O., Laveau, S., Robert, L., 1995. 3-D reconstruction of urban scenes from sequences of images. Automatic Extraction of Man-Made Objects from Aerial and Space Images, p.145–168. [doi:10.1007/978-3-0348-9242-1_15]

    Chapter  Google Scholar 

  • Felzenszwalb, P.F., Huttenlochet, D.P., 2004. Efficient graphbased image segmentation. Int. J. Comput. Vis., 59(2):167–181. [doi:10.1023/B:VISI.0000022288.19776.77]

    Article  Google Scholar 

  • Frahm, J.M., Fite-Georgel, P., Gallup, D., et al., 2010. Building Rome on a cloudless day. Proc. 11th European Conf. on Computer Vision, p.368–381. [doi:10.1007/978-3-642-15561-1_27]

    Google Scholar 

  • Garcia-Gago, J., Gomez-Lahoz, J., Rodríguez-Méndez, J., et al., 2014. Historical single image-based modeling: the case of Gobierna Tower, Zamora (Spain). Remote Sens., 6(2):1085–1101. [doi:10.3390/rs6021085]

    Article  Google Scholar 

  • Geman, S., Geman, D., 1984. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Patt. Anal. Mach. Intell., 6(6):721–741. [doi:10.1109/TPAMI.1984.4767596]

    Article  MATH  Google Scholar 

  • Gormen, T.H., Leiserson, C.E., Rivest, R.L., et al., 1990. Introduction to Algorithms. MIT Press, McGraw-Hill Book Company, New York, USA.

    Google Scholar 

  • Guillou, E., Meneveaux, D., Maisel, E., et al., 2000. Using vanishing points for camera calibration and coarse 3D reconstruction from a single image. Vis. Comput., 16(7):396–410. [doi:10.1007/PL00013394]

    Article  MATH  Google Scholar 

  • Hoiem, D., Efros, A.A., Hebert, M., 2005. Geometric context from a single image. Proc. 10th IEEE Int. Conf. on Computer Vision, p.654–661. [doi:10.1109/ICCV.2005.107]

    Google Scholar 

  • Horn, B.K.P., 1990. Height and gradient from shading. Int. J. Comput. Vis., 5(1):37–75. [doi:10.1007/BF00056771]

    Article  Google Scholar 

  • Horry, Y., Anjyo, K., Arai, K., 1997. Tour into the picture: using a spidery mesh interface to make animation from a single image. Proc. 24th Annual Conf. on Computer Graphics and Interactive Techniques, p.225–232. [doi:10.1145/258734.258854]

    Google Scholar 

  • Kang, S., 1998. Depth Painting for Image-Based Rendering Applications. Technical Report, Compaq Computer Corporation, Cambridge Research Lab.

    Google Scholar 

  • Laveau, S., Faugeras, O., 1994. 3D scene representation as a collection of images. Proc. 12th Int. Conf. on Pattern Recognition, p.689–691. [doi:10.1109/ICPR.1994.576404]

    Chapter  Google Scholar 

  • Liebowitz, D., Criminisi, A., Zisserman, A., 1999. Creating architectural models from images. Comput. Graph. Forum, 18(3):39–50. [doi:10.1111/1467-8659.00326]

    Article  Google Scholar 

  • Lowe, D.G., 2004. Distinctive image features from scaleinvariant keypoints. Int. J. Comput. Vis., 60(2):91–110. [doi:10.1023/B:VISI.0000029664.99615.94]

    Article  Google Scholar 

  • Ma, J., Chan, J.C., Canters, F., 2010. Fully automatic subpixel image registration of multiangle CHRIS/Proba data. IEEE Trans. GeoSci. Remote Sens., 48(7):2829–2839. [doi:10.1109/TGRS.2010.2042813]

    Article  Google Scholar 

  • Manferdini, A.M., 2012. A methodology for the promotion of cultural heritage sites through the use of low-cost technologies and procedures. Proc. 17th Int. Conf. on 3D Web Technology, p.180. [doi:10.1145/2338714.2338747]

    Chapter  Google Scholar 

  • McMillan, L., Bishop, G., 1995. Plenoptic modeling: an image-based rendering system. Proc. 22nd Annual Conf. on Computer Graphics and Interactive Techniques, p.39–46. [doi:10.1145/218380.218398]

    Google Scholar 

  • Mitra, N.J., Pauly, M., 2008. Symmetry for architectural design. Advances in Architectural Geometry, p.13–16.

    Google Scholar 

  • Mitra, N.J., Pauly, M., Wand, M., et al., 2013. Symmetry in 3D geometry: extraction and applications. Comput. Graph. Forum, 32(6):1–23. [doi:10.1111/cgf.12010]

    Article  Google Scholar 

  • Müller, P., Zeng, G., Wonka, P., et al., 2007. Image-based procedural modeling of facades. ACM Trans. Graph., 26(3):85.1–85.9. [doi:10.1145/1276377.1276484]

    Article  Google Scholar 

  • Nagai, T., Ikehara, M., Kurematsu, A., 2007. HMM-based surface reconstruction from single images. Syst. Comput. Jpn., 38(11):80–89. [doi:10.1002/scj.10685]

    Article  Google Scholar 

  • Nan, L., Sharf, A., Zhang, H., et al., 2010. SmartBoxes for interactive urban reconstruction. ACM Trans. Graph., 29(4):93.1–93.10. [doi:10.1145/1778765.1778830]

    Article  Google Scholar 

  • Nevatia, R., Babu, K.R., 1980. Linear feature extraction and description. Comput. Graph. Image Process., 13(3):257–269. [doi:10.1016/0146-664X(80)90049-0]

    Article  Google Scholar 

  • Oh, B.M., Chen, M., Dorsey, J., et al., 2001. Image-based modeling and photo editing. Proc. 28th Annual Conf. on Computer Graphics and Interactive Techniques, p.433–442. [doi:10.1145/383259.383310]

    Google Scholar 

  • Poulin, P., Ouimet, M., Frasson, M.C., 1998. Interactively modeling with photogrammetry. Proc. Eurographics Workshop on Rendering, p.93–104. [doi:10.1007/978-3-7091-6453-2_9]

    Google Scholar 

  • Pylvanainen, T., Berclaz, J., Korah, T., et al., 2012. 3D city modeling from street-level data for augmented reality applications. Proc. 2nd Int. Conf. on 3D Imaging, Modeling, Processing, Visualization and Transmission, p.238–245. [doi:10.1109/3DIMPVT.2012.19]

    Google Scholar 

  • Remondino, F., 2011. Heritage recording and 3D modeling with photogrammetry and 3D scanning. Remote Sens., 3(6):1104–1138. [doi:10.3390/rs3061104]

    Article  Google Scholar 

  • Saxena, A., Chung, S.H., Ng, A.Y., 2008a. 3-D depth reconstruction from a single still image. Int. J. Comput. Vis., 76(1):53–69. [doi:10.1007/s11263-007-0071-y]

    Article  Google Scholar 

  • Saxena, A., Sun, M., Ng, A.Y., 2008b. Make3D: depth perception from a single still image. Proc. 23rd AAAI Conf. on Artificial Intelligence, p.1571–1576.

    Google Scholar 

  • Shade, J., Gortler, S., He, L., et al., 1998. Layered depth images. Proc. 25th AAAI Annual Conf. on Computer Graphics and Interactive Techniques, p.231–242. [doi:10.1145/280814.280882]

    Google Scholar 

  • Shen, C.H., Fu, H., Chen, K., et al., 2012. Structure recovery by part assembly. ACM Trans. Graph., 31(6):180.1–180.11. [doi:10.1145/2366145.2366199]

    Article  Google Scholar 

  • Styliadis, A.D., Sechidis, L.A., 2011. Photography-based facade recovery & 3D modeling: a CAD application in cultural heritage. J. Cult. Herit., 12(3):243–252. [doi:10.1016/j.culher.2010.12.008]

    Article  Google Scholar 

  • Super, B.J., Bovik, A.C., 1995. Shape from texture using local spectral moments. IEEE Trans. Patt. Anal. Mach. Intell., 17(4):333–343. [doi:10.1109/34.385983]

    Article  Google Scholar 

  • Wang, Y., Olano, M., 2011. A framework for GPU 3D model reconstruction using structure-from-motion. Proc. 38th Annual Conf. on Computer Graphics and Interactive Techniques, p.27.1. [doi:10.1145/2037715.2037748]

    Google Scholar 

  • Wei, Y.M., Kang, L., Yang, B., et al., 2013. Applications of structure from motion: a survey. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 14(7):486–494. [doi:10.1631/jzus.CIDE1302]

    Article  Google Scholar 

  • Yang, M.D., Chao, C.F., Huang, K.S., et al., 2013. Imagebased 3D scene reconstruction and exploration in augmented reality. Autom. Constr., 33:48–60. [doi:10.1016/j.autcon.2012.09.017]

    Article  Google Scholar 

  • Zhang, H., Xu, K., Jiang, W., et al., 2013. Layered analysis of irregular facades via symmetry maximization. ACM. Trans. Graph., 32(4):121.1–121.10. [doi:10.1145/2461912.2461923]

    Article  Google Scholar 

  • Zhang, L., Dugas-Phocion, G., Samson, J.S., et al., 2002. Single-view modeling of free-form scenes. J. Visual. Comput. Animat., 13(4):225–235. [doi:10.1002/vis.291]

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HyungSeok Kim.

Additional information

Project partially supported by the Ministry of Culture, Sports and Tourism and Korea Creative Content Agency in the Culture Technology Research & Development Program 2014 (50%), and the Next Generation Information Computing Development Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning (No. 2012M3C4A7032185) (50%)

ORCID: HyungSeok KIM, http://orcid.org/0000-0003-4816-2992

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Divya Udayan, J., Kim, H. & Kim, JI. Animage-based approach to the reconstruction of ancient architectures by extracting and arranging 3D spatial components. Frontiers Inf Technol Electronic Eng 16, 12–27 (2015). https://doi.org/10.1631/FITEE.1400141

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1400141

Key words

CLC number

Navigation