Skip to main content
Log in

Epstein-Barr virus interactions with the Bcl-2 protein family and apoptosis in human tumor cells

  • Review
  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Epstein-Barr virus (EBV), a human gammaherpesvirus carried by more than 90% of the world’s population, is associated with malignant tumors such as Burkitt’s lymphoma (BL), Hodgkin lymphoma, post-transplant lymphoma, extra-nodal natural killer/T cell lymphoma, and nasopharyngeal and gastric carcinomas in immune-compromised patients. In the process of infection, EBV faces challenges: the host cell environment is harsh, and the survival and apoptosis of host cells are precisely regulated. Only when host cells receive sufficient survival signals may they immortalize. To establish efficiently a lytic or long-term latent infection, EBV must escape the host cell immunologic mechanism and resist host cell apoptosis by interfering with multiple signaling pathways. This review details the apoptotic pathway disrupted by EBV in EBV-infected cells and describes the interactions of EBV gene products with host cellular factors as well as the function of these factors, which decide the fate of the host cell. The relationships between other EBV-encoded genes and proteins of the B-cell leukemia/lymphoma (Bcl) family are unknown. Still, EBV seems to contribute to establishing its own latency and the formation of tumors by modifying events that impact cell survival and proliferation as well as the immune response of the infected host. We discuss potential therapeutic drugs to provide a foundation for further studies of tumor pathogenesis aimed at exploiting novel therapeutic strategies for EBV-associated diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdulkarim, B., Sabri, S., Zelenika, D., Deutsch, E., Frascogna, V., Klijanienko, J., Vainchenker, W., Joab, I., Bourhis, J., 2003. Antiviral agent Cidofovir decreases Epstein-Barr virus (EBV) oncoproteins and enhances the radiosensitivity in EBV-related malignancies. Oncogene, 22(15):2260–2271. [doi:10.1038/sj.onc.1206402]

    Article  PubMed  CAS  Google Scholar 

  • Altmann, M., Pich, D., Ruiss, R., Hammers Chmidt, W., Wang, J., Sugden, B., 2006. Transcriptional activation by EBV nuclear antigen 1 is essential for the expression of EBV’s transforming genes. PNAS, 103(38):14188–14193. [doi:10.1073/pnas.0605985103]

    Article  PubMed  CAS  Google Scholar 

  • Anderton, E., Yee, J., Smith, P., Crook, T., White, R.E., 2008. Two Epstein-Barr virus (EBV) oncoproteins cooperate to repress expression of the proapoptotic tumor-suppressor Bim: clues to the pathogenesis of Burkitt’s lymphoma. Oncogene, 27(4):421–433. [doi:10.1038/sj.onc.1210668]

    Article  PubMed  CAS  Google Scholar 

  • Artavanis-Tsakonas, S., Matsuno, K., Fortini, M.E., 1995. Notch signaling. Science, 268(5208):225–232. [doi:10.1126/science.7716513]

    Article  PubMed  CAS  Google Scholar 

  • Azmi, A.S., Mohammad, R.M., 2009. Non-peptidic small molecule inhibitors against Bcl-2 for cancer therapy. J. Cell. Physiol., 218(1):13–21. [doi:10.1002/jcp.21567]

    Article  PubMed  CAS  Google Scholar 

  • Babcock, G.J., Hochberg, D., Thorley-Lawson, D.A., 2000. The expression pattern of Epstein-Barr virus latent genes in vivo is dependent upon the differentiation stage of the infected B cell. Immunity, 13(4):497–506. [doi:10.1016/S1074-7613(00)00049-2]

    Article  PubMed  CAS  Google Scholar 

  • Bakhshi, A., Jensen, J.P., Goldman, P., Wright, J.J., McBride, O.W., Epstein, A.L., Korsmeyer, S.J., 1985. Cloning the chromosomal breakpoint of the (14; 18) human lymphomas: clustering around JH on chromosome 14 and near atranscriptional unit on 18. Cell, 41(3):899–906. [doi:10.1016/S0092-8674(85)80070-2]

    Article  PubMed  CAS  Google Scholar 

  • Baldwin, A.S.Jr., 2001. Series introduction: the transcription factor NF-κB and human disease. J. Clin. Invest., 107(1):3–6. [doi:10.1172/JCI11891]

    Article  PubMed  CAS  Google Scholar 

  • Bartholomeusz, G., Wu, Y., Ali Seyed, M., Xia, W., Kwong, K.Y., Hortobagyi, G., Hung, M.C., 2006. Nuclear translocation of the pro-apoptotic Bcl-2 family member bok induces apoptosis. Mol. Carcinogen., 45(2):73–83. [doi:10.1002/mc.20156]

    Article  CAS  Google Scholar 

  • Bellows, D.S., Howell, M., Pearson, C., Hazlewood, S.A., Hardwick, J.M., 2002. Epstein-Barr virus BALF1 is a BCL-2-like antagonist of the herpesvirus antiapoptotic BCL-2 proteins. J. Virol., 76(5):2469–2479. [doi:10.1128/jvi.76.5.2469-2479.2002]

    Article  PubMed  CAS  Google Scholar 

  • Bieging, K.T., Amick, A.C., Longnecker, R., 2009. Epstein-Barr virus LMP2A bypasses p53 inactivation in a MYC model of lymphoma genesis. PNAS, 106(42):17945–17950. [doi:10.1073/pnas.0907994106]

    Article  PubMed  CAS  Google Scholar 

  • Bieging, K.T., Swanson-Mungerson, M., Amick, A.C., Longnecker, R., 2010. Epstein-Barr virus in Burkitt’s lymphoma: a role for latent membrane protein 2A. Cell Cycle, 9(5):901–908. [doi:10.4161/cc.9.5.10840]

    Article  PubMed  CAS  Google Scholar 

  • Bornkamm, G.W., Hammerschmidt, W., 2001. Molecular virology of Epstein-Barr virus. Philosoph. Transact. Roy. Soc. B, 356(1408):437–459. [doi:10.1098/rstb.2000.0781]

    Article  CAS  Google Scholar 

  • Boyd, J.M., Gallo, G.J., Elanqovan, B., Houqhton, B., Malstrom, S., Avery, B.J., Ebb, R.G., Subramanian, T., Chittenden, T., Lutz, R.J., 1995. Bik, a novel death-inducing protein shares a distinct sequence motif with Bcl-2 family proteins and interacts with viral and cellular survival-promoting proteins. Oncogene, 11(9):1921–1928.

    PubMed  CAS  Google Scholar 

  • Cai, X., Schafer, A., Lu, S., Bilello, J.P., Desrosiers, R.C., Edwards, R., Raab-Traub, N., Cullen, B.R., 2006. Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog., 2(3):e23. [doi:10.1371/journal.ppat.0020023]

    Article  PubMed  CAS  Google Scholar 

  • Carmilleri-Broet, B.S., Davi, F., Feuillard, J., Bourgeois, C., Seilhean, D., Hauw, J.J., Raphaël, M., 1995. High expression of latent membrane protein 1 of Epstein-Barr virus and BCL-2 oncoprotein in acquired immunodeficiency syndrome-related primary brain lymphomas. Blood, 86(2):432–435.

    Google Scholar 

  • Choy, E.Y., Siu, K.L., Kok, K.H., Lung, R.W., Tsang, C.M., To, K.F., Kwong, D.L., Tsao, S.W., Jin, D.Y., 2008. An Epstein-Barr virus-encoded microRNA targets PUMA to promote host cell survival. J. Exp. Med., 205(11): 2551–2560. [doi:10.1084/jem.20072581]

    Article  PubMed  CAS  Google Scholar 

  • Clybouw, C., McHichi, B., Mouhamad, S., Auffredou, M.T., Bourgeade, M.F., Sharma, S., Leca, G., Vazquez, A., 2005. EBV infection of human B lymphocytes leads to down-regulation of Bim expression: relationship to resistance to apoptosis. J. Immunol., 175(5):2968–2973.

    PubMed  CAS  Google Scholar 

  • Cohen, J.I., Lekstrom, K., 1999. Epstein-Barr virus BARF1 protein is dispensable for B-cell transformation and inhibits alpha interferon secretion from mononuclear cells. J. Virol., 73(9):7627–7632.

    PubMed  CAS  Google Scholar 

  • Cory, S., Huang, D.C., Adams, J.M., 2003. The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene, 22(53):8590–8607. [doi:10.1038/sj.onc.1207102]

    Article  PubMed  CAS  Google Scholar 

  • Countryman, J., Miller, G., 1985. Activation of expression of latent Epstein-Barr herpesvirus after gene transfer with a small cloned subfragment of heterogeneous viral DNA. PNAS, 82(12):4085–4089. [doi:10.1073/pnas.82.12.4085]

    Article  PubMed  CAS  Google Scholar 

  • Cross, J.R., Postigo, A., Blight, K., Downward, J., 2008. Viral pro-survival proteins block separate stages in Bax activation but changes in mitochondrial ultrastructure still occur. Cell Death Differ., 15(6):997–1008. [doi:10.1038/cdd.2008.14]

    Article  PubMed  CAS  Google Scholar 

  • Danial, N.N., Korsmeyer, S.J., 2004. Cell death: critical control points. Cell, 116(2):205–219. [doi:10.1016/S0092-8674(04)00046-7]

    Article  PubMed  CAS  Google Scholar 

  • da Silva, S.R., de Oliveira, D.E., 2011. HIV, EBV and KSHV: viral cooperation in the pathogenesis of human malignancies. Cancer Lett., 305(2):175–185. [doi:10.1016/j.canlet.2011.02.007]

    Article  PubMed  CAS  Google Scholar 

  • Dawson, C.W., Dawson, J., Jones, R., Ward, K., Young, L.S., 1998. Functional differences between BHRF1, the EBV-encoded Bcl-2 homologue, and bcl-2 in human epithelial cells. J. Virol., 72(11):9016–9024.

    PubMed  CAS  Google Scholar 

  • Desbien, A.L., Kappler, J.W., Marrack, P., 2009. The Epstein-Barr virus Bcl-2 homolog, BHRF1, blocks apoptosis by binding to a limited amount of Bim. PNAS, 106(14): 5663–5668. [doi:10.1073/pnas.0901036106]

    Article  PubMed  CAS  Google Scholar 

  • Feederle, R., Kost, M., Baumann, M., Janz, A., Drouet, E., Hammerschmidt, W., Delecluse, H.J., 2000. The Epstein-Barr virus lytic program is controlled by the co-operative functions of two transactivators. EMBO J., 19(12):3080–3089. [doi:10.1093/emboj/19.12.3080]

    Article  PubMed  CAS  Google Scholar 

  • Finke, J., Fritzen, R., Ternes, P., Trivedi, P., Bross, K.J., Lange, W., Mertelsmann, R., Dolken, G., 1992. Expression of bcl-2 in Burkitt’s lymphoma cell lines: induction by latent Epstein-Barr virus genes. Blood, 80(2):459–469.

    PubMed  CAS  Google Scholar 

  • Flanagan, A.M., Letai, A., 2008. BH3 domains define selective inhibitory interactions with BHRF-1 and KSHV BCL-2. Cell Death Differ., 15(3):580–588. [doi:10.1038/sj.cdd.4402292]

    Article  PubMed  CAS  Google Scholar 

  • Forte, E., Luftig, M.A., 2011. The role of microRNAs in Epstein-Barr virus latency and lytic reactivation. Microbes Infect., 13(14–15):1156–1167. [doi:10.1016/j.micinf.2011.07.007]

    Article  PubMed  CAS  Google Scholar 

  • Ghosh, S.K., Perrine, S.P., Faller, D.V., 2012. Advances in virus-directed therapeutics against Epstein-Barr virus-associated malignancies. Adv. Virol., 2012(2012):1–11. [doi:10.1155/2012/509296]

    Article  CAS  Google Scholar 

  • Grundhoff, A., Sullivan, C.S., Ganem, D., 2006. A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. RNA, 12(5):733–750. [doi:10.1261/rna.2326106]

    Article  PubMed  CAS  Google Scholar 

  • Hayes, D.P., Brink, A.A.T., Vervoort, M.B.H.J., Brule, A.J., Middeldorp, J.M., Meijer, C.J.L., 1999. Expression of Epstein-Barr virus (EBV) transcripts encoding homologues to important human proteins in diverse EBV associated diseases. J. Clin. Pathol. Mol., 52(2):97–103. [doi:10.1136/mp.52.2.97]

    Article  CAS  Google Scholar 

  • Hayward, S.D., 2004. Viral interactions with the Notch pathway. Semin. Cancer Biol., 14(5):387–396. [doi:10.1016/j.semcancer.2004.04.018]

    Article  PubMed  CAS  Google Scholar 

  • Henderson, S., Huen, D., Rowe, M., Dawson, C., Johnson, G., Rickinson, A., 1993. Epstein-Barr virus-coded BHRF1 protein, a viral homologue of Bcl-2, protects human B cells from programmed cell death. PNAS, 90(18):8479–8483. [doi:10.1073/pnas.90.18.8479]

    Article  PubMed  CAS  Google Scholar 

  • Hickish, T., Robertson, D., Clarke, P., Hill, M., Stefano, F., Clarke, C., Cunningham, D., 1994. Ultrastructural localization of BHRF1: an Epstein-Barr virus gene product which has homology with bcl-2. Cancer Res., 54:2808–2811.

    PubMed  CAS  Google Scholar 

  • Howell, M., Williams, T., Hazlewood, S.A., 2005. Herpesvirus pan encodes a functional homologue of BHRF1, the Epstein-Barr virus v-Bcl-2. BMC Microbiol., 5(6):1–11. [doi:10.1186/1471-2180-5-6]

    Google Scholar 

  • Hsu, S.Y., Lin, P., Hsueh, A.J.W., 1998. BOD (bcl-2-related ovarian death gene) is an ovarian BH3 domain-containing proapoptotic bcl-2 protein capable of dimerization with diverse antiapoptotic bcl-2 members. Mol. Endocrinol., 12(9):1432–1440. [doi:10.1210/me.12.9.1432]

    Article  PubMed  CAS  Google Scholar 

  • Hsu, S.Y., Kaipia, A., Zhu, L., Hsueh, A.J.W., 1997. Interference of BAD (Bcl-xL/Bcl-2-associated death promoter)-induced apoptosis in mammalian cells by 14-3-3 isoforms and P11. Mol. Endocrinol., 11(12):1858–1867. [doi:10.1210/me.11.12.1858]

    Article  PubMed  CAS  Google Scholar 

  • Huang, D.C.S., Strasser, A., 2000. BH3-only proteins-essential initiators of apoptotic cell death. Cell, 103(6):839–842. [doi:10.1016/S0092-8674(00)00187-2]

    Article  PubMed  CAS  Google Scholar 

  • Jaenisch, R., Bird, A., 2003. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet., 33:245–254. [doi:10.1038/ng1089]

    Article  PubMed  CAS  Google Scholar 

  • Jamil, S., Sobouti, R., Hojabrpour, P., Raj, M., Kast, J., Duronio, V., 2005. A proteolytic fragment of Mcl-1 exhibits nuclear localization and regulates cell growth by interaction with Cdk1. Biochem. J., 387(3):659–667. [doi:10.1042/BJ20041596]

    Article  PubMed  CAS  Google Scholar 

  • Jansen, B., Wachek, V., Heere-Ress, E., Schlagbauer-Wadl, H., Hoeller, C., Lucas, T., Hoermann, M., Hollenstein, U., Wolff, K., Pehamberger, H., 2000. Chemosensitization of malignant melanoma by BCL-2 antisense therapy. Lancet, 356(9243):1728–1733. [doi:10.1016/S0140-6736(00)03 207-4]

    Article  PubMed  CAS  Google Scholar 

  • Kalla, M., Hammerschmidt, W., 2012. Human B cells on their route to latent infection-early but transient expression of lytic genes of Epstein-Barr virus. Eur. J. Cell Biol., 91(1):65–69. [doi:10.1016/j.ejcb.2011.01.014]

    Article  PubMed  CAS  Google Scholar 

  • Kalla, M., Schmeinck, A., Bergbauer, M., Pich, D., Hammerschmidt, W., 2010. AP-1 homolog BZLF1 of Epstein-Barr virus has two essential functions dependent on the epigenetic state of the viral genome. PNAS, 107(2):850–855. [doi:10.1073/pnas.0911948107]

    Article  PubMed  CAS  Google Scholar 

  • Kelly, G.L., Long, H.M., Stylianou, J., Thomas, W.A., Leese, A., Bell, A.I., Bornkamm, G.W., Autner, J.M., Rickinson, A.B., Rowe, M., 2009. An Epstein-Barr virus anti-apoptotic protein constitutively expressed in transformed cells and implicated in Burkitt’s lymphomagenesis: the WP/BHRF1 link. PLoS Pathog., 5(3):e1000341. [doi:10.1371/journal.ppat.1000341]

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, G., Komano, J., Sugden, B., 2003. Epstein-Barr virus provides a survival factor to Burkitt’s lymphomas. PNAS, 100(24):14269–14274. [doi:10.1073/pnas.2336099100]

    Article  PubMed  CAS  Google Scholar 

  • Kenney, J.L., Guinness, M.E., Curiel, T., Lacy, J., 1998. Antisense to the Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP-1) suppresses LMP-1 and bcl-2 expression and promotes apoptosis in EBV-immortalized B cells. Blood, 92(5):1721–1727.

    PubMed  CAS  Google Scholar 

  • Kim, J.H., Kim, W.S., Park, C., 2012. Epstein-Barr virus latent membrane protein-1 protects B-cell lymphoma from rituximab-induced apoptosis through miR-155-mediated Akt activation and up-regulation of Mcl-1. Leuk. Lymphoma, 53(8):1586–1591. [doi:10.3109/10428194.2012.659736]

    Article  PubMed  CAS  Google Scholar 

  • Kim, L.H., Nadarajah, V.S., Peh, S.C., Poppema, S., 2004. Expression of Bcl-2 family members and presence of Epstein-Barr virus inthe regulation of cell growth and death in classical Hodgkin’s lymphoma. Histopathology, 44(3):257–267. [doi:10.1111/j.0309-0167.2004.01829.x]

    Article  PubMed  CAS  Google Scholar 

  • Klasa, R.J., Bally, M.B., Ng, R., Goldie, J.H., Gascoyne, R.D., Wong, F.M.P., 2000. Eradication of human non-Hodgkin’s lymphoma in SCID mice by BCL-2 antisense oligonucleotides combined with lowdose cyclophosphamide. Clin. Cancer Res., 6:2492–2500.

    PubMed  CAS  Google Scholar 

  • Kohlhof, H., Hampel, F., Hoffmann, R., Burtscher, H., Weidle, U.H., Hölzel, M., Eick, D., Zimber-Strobl, U., Strobl, L.J., 2009. Notch1, Notch2, and Epstein-Barr virus-encoded nuclear antigen 2 signaling differentially affects proliferation and survival of Epstein-Barr virus-infected B cells. Blood, 113(22):5506–5515. [doi:10.1182/blood-2008-11-190090]

    Article  PubMed  CAS  Google Scholar 

  • Komano, J., Sugiura, M., Takada, K., 1998. Epstein-Barr virus contributes to the malignant phenotype and to apoptosis resistance in Burkitt’s lymphoma cell line Akata. J. Virol., 72(11):9150–9156.

    PubMed  CAS  Google Scholar 

  • Komano, J., Maruo, S., Kurozumi, K., Oda, T., Takada, K., 1999. Oncogenic role of Epstein-Barr virus-encoded RNAs in Burkitt’s lymphoma cell line akata. J. Virol., 73(12):9827.

    PubMed  CAS  Google Scholar 

  • Kozopas, K.M., Yang, T., Buchan, H.L., Zhou, P., Craig, R.W., 1993. MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. PNAS, 90(8):3516–3520. [doi:10.1073/pnas.90.8.3516]

    Article  PubMed  CAS  Google Scholar 

  • Kvansakul, M., Wei, A.H., Fletcher, J.I., Willis, S.N., Chen, L., 2010. Structural basis for apoptosis inhibition by Epstein-Barr virus BHRF1. PLoS Pathog., 6(12):1–10. [doi:10.1371/journal.ppat.1001236]

    Article  CAS  Google Scholar 

  • Lantner, F., Starlets, D., Gore, Y., Flaishon, L., Yamit, H.A., Dikstein, R., Leng, L., Bucala, R., Machluf, Y., Oren, M., et al., 2007. CD74 induces TAp63 expression leading to B-cell survival. Blood, 110(13):4303–4311. [doi:10.1182/blood-2007-04-087486]

    Article  PubMed  CAS  Google Scholar 

  • Leber, B., Geng, F., Kale, J., Andrews, D.W., 2010. Drugs targeting Bcl2 family members as an emerging strategy in cancer. Exp. Rev. Mol. Med., 12:e18. [doi:10.1017/S1462399410001572]

    Article  CAS  Google Scholar 

  • Lee, Y.S., Dutta, A., 2009. MicroRNAs in cancer. Ann. Rev. Pathol., 4:199–227. [doi:10.1146/annurev.pathol.4.110807.092222]

    Article  CAS  Google Scholar 

  • Letai, A., Bassik, M.C., Walensky, L.D., Sorcinelli, M.D., Weiler, S., Korsmeyer, S.J., 2002. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell, 2(3):183–192. [doi:10.1016/S1535-6108(02)00127-7]

    Article  PubMed  CAS  Google Scholar 

  • Li, L.Y., Shih, H.M., Liu, M.Y., Chen, J.Y., 2001. The cellular protein PRA1 modulates the anti-apoptotic activity of Epstein-Barr virus BHRF1, a homologue of Bcl-2, through direct interaction. J. Biol. Chem., 276(29): 27354–27362. [doi:10.1074/jbc.M103821200]

    Article  PubMed  CAS  Google Scholar 

  • Liu, M.T., Chen, Y,R., Chen, S.C., Hu, C.Y., Lin, C.S., Chang, Y.T., Wang, W.B., Chen, J.Y., 2004. Epstein-Barr virus latent membrane protein 1 induces micronucleus formation, represses DNA repair and enhances sensitivity to DNA-damaging agents in human epithelial cells. Oncogene, 23(14):2531–2539. [doi:10.1038/sj.onc.1207375]

    Article  PubMed  CAS  Google Scholar 

  • Liu, M.T., Chang, Y.T., Chen, S.C., Chuang, Y.C., Chen, Y.R., Lin, C.S., Chen, J.Y., 2005. Epstein-Barr virus latent membrane protein 1 represses p53-mediated DNA repair and transcriptional activity. Oncogene, 24(16):2635–2646. [doi:10.1038/sj.onc.1208319]

    Article  PubMed  CAS  Google Scholar 

  • Loomis, R., Carbone, R., Reiss, M., Lacy, J., 2003. Bcl-2 antisense (G3139, Genasense) enhances the in vitro and in vivo response of Epstein-Barr virus-associated lymphoproliferative disease to rituximab. Clin. Cancer Res., 9(5):1931–1939.

    PubMed  CAS  Google Scholar 

  • Lu, J.Y., Chen, J.Y., Hsu, T.Y., Yu, C.Y., Su, I.J., Yang, C.S., 1997. Cooperative interaction between Bcl-2 and Epstein-Barr virus latent membrane protein 1 in the growth transformation of human epithelial cells. J. Gen. Virol., 78(11):2975–2985.

    PubMed  CAS  Google Scholar 

  • Marchini, A., Tomkinson, B., Cohen, J.I., Kieff, E., 1991. BHRF1, the Epstein-Barr virus gene with homology to Bcl2, is dispensable for B-lymphocyte transformation and virus replication. J. Virol., 65(11):5991–6000.

    PubMed  CAS  Google Scholar 

  • Marin, M.C., Hsu, B., Stephens, L.C., Brisbay, S., McDonnell, T.J., 1995. The functional basis of c-myc and bcl-2 complementation during multistep lymphomagenesis in vivo. Exp. Cell Res., 217(2):240–247. [doi:10.1006/excr.1995.1083]

    Article  PubMed  CAS  Google Scholar 

  • Marshall, W.L., Yim, C., Gustafson, E., Graf, T., Sage, D.R., Hanify, K., Williams, L., Fingeroth, J., Finberg, R.W., 1999. Epstein-Barr virus encodes a novel homolog of the bcl-2 oncogene that inhibits apoptosis and associates with Bax and Bak. J. Virol., 73(6):5181–5185.

    PubMed  CAS  Google Scholar 

  • McCurrach, M.E., Connor, T.M., Knudson, C.M., Korsmeyer, S.J., Lowe, S.W., 1997. Bax-deficiency promotes drug resistance and oncogenic transformation by attenuating p53-dependent apoptosis. PNAS, 94(6):2345–2349. [doi:10.1073/pnas.94.6.2345]

    Article  PubMed  CAS  Google Scholar 

  • Miayake, H., Tolcher, A., Gleave, M.E., 2000. Chemosensitization and delayed androgen-independent recurrence of prostate cancer with the use of antisense Bcl-2 oligodeoxynucleotides. J. Nat. Cancer Inst., 92(1):34–41. [doi:10.1093/jnci/92.1.34]

    Article  PubMed  CAS  Google Scholar 

  • Morris, M.J., Tong, W.P., Cordon-Cardo, C., Drobnjak, M., Kelly, W.K., Slovin, S.F., Terry, K.L., Siedlecki, K., Swanson, P., Rafi, M., et al., 2002. Phase I trial of BCL-2 antisense oligonucleotide (G3139) administered by continuous intravenous infusion in patients with advanced cancer. Clin. Cancer Res., 8:679–683.

    PubMed  CAS  Google Scholar 

  • Nakano, K., Vousden, K.H., 2001. PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell, 7(3):683–694. [doi:10.1016/S1097-2765(01)00214-3]

    Article  PubMed  CAS  Google Scholar 

  • Nguyen, M., Marcellus, R.C., Roulston, A., Watson, M., Serfass, L., Madiraju, S.R.M., Goulet, D., Viallet, J., Bélec, L., Billot, X., et al., 2007. Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. PNAS, 104(49):19512–19517. [doi:10.1073/pnas.0709443104]

    Article  PubMed  CAS  Google Scholar 

  • Noguchi, T., Ikeda, K., Yamamoto, K., Yoshida, I., Ashiba, A., Tsuchiyama, J., Shinagawa, K., Yoshino, T., Takata, M., Harada, M., 2001. Antisense oligodeoxynucleotides to latent membrane protein 1 induce growth inhibition, apoptosis and Bcl-2 suppression in Epstein-Barr virus EBV-transformed B-lymphoblastoid cells, but not in EBV-positive natural killer cell lymphoma cells. Br. J. Haematol., 114(1):84–92. [doi:10.1046/j.1365-2141.2001.02887.x]

    Article  PubMed  CAS  Google Scholar 

  • Paschos, K., Smith, P., Anderton, E., Middeldorp, J.M., White, R.E., Allday, M.J., 2009. Epstein-Barr virus latency in B cells leads to epigenetic repression and CpG methylation of the tumor suppressor gene bim. PLoS Pathogens., 5(6):e1000492. [doi:10.1371/journal.ppat.1000492]

    Article  PubMed  CAS  Google Scholar 

  • Paschos, K., Parker, G.A., Watanatanasup, E., White, R.E., Allday, M.J., 2012. BIM promoter directly targeted by EBNA3C in polycomb-mediated repression by EBV. Nucleic Acids Res., 40(15):7233–7246. [doi:10.1093/nar/gks391]

    Article  PubMed  CAS  Google Scholar 

  • Pegman, P.M., Smith, S.M., D’souza, B.N., Loughran, S.T., Maier, S., Kempkes, B., Cahill, P.A., Gélinas, C., Simmons, M.J., Walls, D., 2006. Epstein-Barr virus nuclear antigen 2 trans-activates the cellular anti-apoptotic bfl-1 gene by a CBF1/RBPJk-dependent pathway. J. Virol., 80(16):8133–8144. [doi:10.1128/JVI.00278-06]

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer, S., Zavolan, M., Grasser, F.A., Chien, M., Russo, J.J., Ju, J., John, B., Enright, J., Marks, D., Sander, C., et al., 2004. Identification of virus-encoded microRNAs. Science, 304(5671):734–736. [doi:10.1126/science.1096781]

    Article  PubMed  CAS  Google Scholar 

  • Portis, T., Longnecker, R., 2004. Epstein-Barr virus (EBV) LMP2A mediates B-lymphocyte survival through constitutive activation of the Ras/PI3K/AKT pathway. Oncogene, 23(53):8619–8628. [doi:10.1038/sj.onc.1207905]

    Article  PubMed  CAS  Google Scholar 

  • Pratt, Z.L., Zhang, J., Sugden, B., 2012. Simultaneously induce and inhibit oncogene of Epstein-Barr virus can the latent membrane protein 1 (LMP1) apoptosis in B cells. J. Virol., 86(8):4380. [doi:10.1128/JVI.06966-11]

    Article  PubMed  CAS  Google Scholar 

  • Pujals, A., Renouf, B., Robert, A., Chelouah, S., Hollville, E., Wiels, J., 2011. Treatment with a BH3 mimetic overcomes the resistance of latency III EBV(+) cells to p53-mediated apoptosis. Cell Death Dis., 2(7):e184. [doi:10.1038/cddis.2011.67]

    Article  PubMed  CAS  Google Scholar 

  • Puthalakath, H., Strasser, A., 2002. Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ., 9(5):505–512. [doi:10.1038/sj.cdd.4400998]

    Article  PubMed  CAS  Google Scholar 

  • Rampino, N., Yamamoto, H., Ionov, Y., Li, Y., Sawai, H., Reed, J.C., Perucho, M., 1997. Somatic frame shift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science, 275(5303):967–969. [doi:10.1126/science.275.5302.967]

    Article  PubMed  CAS  Google Scholar 

  • Rickinson, A.B., Kieff, E., 2007. Epstein-Barr virus. J. Virol., 2655–2700.

  • Rickinson, A.B., Kieff, E., 2007. Epstein-Barr Virus. In: Knipe, D.M., Howley, P.M., (Eds.), Fields of virology. Lippincott Williams & Wilkins, Philadelphia, PA, p.2655–2700

    Google Scholar 

  • Riedl, S.J., Shi, Y., 2004. Molecular mechanisms of caspase regulation during apoptosis. Nat. Rev. Mol. Cell. Biol., 5(11):897–907. [doi:10.1038/nrm1496]

    Article  PubMed  CAS  Google Scholar 

  • Rowe, M., Peng-Pilon, M., Huen, D.S., Hardy, R., Croom-Carter, D., Lundgren, E., Rickinson, A.B., 1994. Up-regulation of bcl-2 by the Epstein-Barr virus latent membrane protein LMP1: a B-cell-specific response that is delayed relative to NF-κB activation and to induction of cell surface markers. J. Virol., 68(9):5602–5612.

    PubMed  CAS  Google Scholar 

  • Sarac, S., Akyol, M.U., Kanbur, B., Poyraz, A., Akyol, G., Yilmaz, T., Sungur, A., 2001. Bcl-2 and LMP1 expression in nasopharyngeal carcinomas. Am. J. Otolaryng., 22(6): 377–382. [doi:10.1053/ajot.2001.28071]

    Article  CAS  Google Scholar 

  • Scholle, F., Bendt, K.M., Raab-Traub, N., 2000. Epstein-Barr virus LMP2A transforms epithelial cells, inhibits cell differentiation, and activates Akt. J. Virol., 74(22): 10681–10689. [doi:10.1128/JVI.74.22.10681-10689.2000]

    Article  PubMed  CAS  Google Scholar 

  • Sheng, W., Decaussin, G., Sumner, S., Ooka, T., 2001. N-terminal domain of BARF1 gene encoded by Epstein-Barr virus is essential for malignant transformation of rodent fibroblasts and activation of BCL-2. Oncogene, 20(10):1176–1185. [doi:10.1038/sj.onc.1204217]

    Article  PubMed  CAS  Google Scholar 

  • Sheng, W., Decaussin, G., Ligout, A., Takada, K., Ooka, T., 2003. Malignant transformation of Epstein-Barr virus-negative akata cells by introduction of the BARF1 gene carried by Epstein-Barr virus. J. Virol., 77(6):3859–3865. [doi:10.1128/JVI.77.6.3859-3865.2003]

    Article  PubMed  CAS  Google Scholar 

  • Sinclair, A.J., 2003. bZIP proteins of human gammaherpesviruses. J. Gen. Virol., 84(8):1941–1949. [doi:10.1099/vir.0.19112-0]

    Article  PubMed  CAS  Google Scholar 

  • Spender, L.C., Inman, G.J., 2011. Inhibition of germinal center apoptotic programmes by Epstein-Barr virus. Adv. Hematol., 2011:1–10. [doi:10.1155/2011/829525]

    Article  Google Scholar 

  • Srimatkandada, P., Loomis, R., Carbone, R., Srimatkandada, S., Lacy, J., 2008. Combined proteasome and Bcl-2 inhibition stimulates apoptosis and inhibits growth in EBV-transformed lymphocytes: a potential therapeutic approach to EBV-associated lymphoproliferative diseases. Eur. J. Haematol., 80(5):407–418. [doi:10.1111/j.1600-0609.2008.01044.x]

    Article  PubMed  CAS  Google Scholar 

  • Steelman, L.S., Pohnert, S.C., Shelton, J.G., Franklin, R.A., Bertrand, F.E., McCubrey, J.A., 2004. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia, 18(2):189–218. [doi:10.1038/sj.leu.2403241]

    Article  PubMed  CAS  Google Scholar 

  • Strockbine, L.D., Cohen, J.I., Farrah, T., Lyman, S.D., Wagener, F., DuBose, R.F., Armitage, R.J., Spriggs, M.K., 1998. The Epstein-Barr virus BARF1 gene encodes a novel, soluble colony-stimulating factor-1 receptor. J. Virol., 72(5):4015–4021.

    PubMed  CAS  Google Scholar 

  • Suzuki, M.M., Bird, A., 2008. DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet., 9(6):465–476. [doi:10.1038/nrg2341]

    Article  PubMed  CAS  Google Scholar 

  • Swanson-Mungerson, M., Bultema, R., Longnecker, R., 2010. Epstein-Barr virus LMP2A imposes sensitivity to apoptosis. J. Gen. Virol., 91(9):2197–2202. [doi:10.1099/vir.0. 021444-0]

    Article  PubMed  CAS  Google Scholar 

  • Takano, Y., Saegusa, M., Masuda, M., Mikami, T., Okayasu, I., 1997. Apoptosis, proliferative activity and Bcl-2 expression in Epstein-Barr-virus-positive non-Hodgkin’s lymphoma. J. Cancer Res. Clin., 123(7):395–401. [doi:10.1007/BF01240123]

    CAS  Google Scholar 

  • Theodorakis, P., D’sa-Eipper, C., Subramanian, T., Chinnadurai, G., 1996. Unmasking of a proliferation-restraining activity of the anti-apoptosis protein EBV BHRF. Oncogene, 12(8):1707–1713.

    PubMed  CAS  Google Scholar 

  • Thorley-Lawson, D.A., Gross, A., 2004. Persistence of the Epstein-Barr virus and the origins of associated lymphomas. N. Engl. J. Med., 350(13):1328–1337. [doi:10.1056/NEJMra032015]

    Article  PubMed  CAS  Google Scholar 

  • Tomkinson, B., Robertson, E., Kieff, E., 1993. Epstein-Barr virus nuclear proteins EBNA-3A and EBNA-3C are essential for B-lymphocyte growth transformation. J. Virol., 67(4):2014–2025.

    PubMed  CAS  Google Scholar 

  • Vogler, M., Butterworth, M., Majid, A., Walewska, R.J., Sun, X.M., Dyer, M.J.S., Cohen, G.M., 2009. Concurrent up-regulation of BCL-XL and BCL2A1 induces approximately 1000-fold resistance to ABT-737 in chronic lymphocytic leukemia. Blood, 113(18):4403–4413. [doi:10.1182/blood-2008-08-173310]

    Article  PubMed  CAS  Google Scholar 

  • Wachek, V., Heere-Ress, E., Halaschek-Wiener, J., Lucas, T., Meyer, H., Eichler, H.G., Jansen, B., 2001. Bcl-2 antisense oligonucleotides chemosensitize human gastric cancer in a SCID mouse xenotransplantation model. J. Mol. Med., 79(10):587–593. [doi:10.1007/s001090100251]

    Article  Google Scholar 

  • Wang, S., Rowe, M., Lundgren, E., 1996. Expression of the Epstein Barr virus transforming protein LMP1 causes a rapid and transient stimulation of the Bcl-2 homologue Mcl-1 levels in B-cell lines. Cancer Res., 56:4610–4613.

    PubMed  CAS  Google Scholar 

  • Waters, J.S., Webb, A., Cunningham, D., Clarke, P.A., Raynaud, F., di Stefano, F., Cotter, F.E., 2000. Phase I clinical and pharmacokinetic study of bcl-2 antisense oligonucleotide therapy in patients with non-Hodgkin’s lymphoma. J. Clin. Oncol., 18(9):1812–1823.

    PubMed  CAS  Google Scholar 

  • Wei, M.C., Zong, W.X., Cheng, E.H., Lindsten, T., Panoutsakopoulou, V., Ross, A.J., Roth, K.A., MacGregor, G.R., Thompson, C.B., Korsmeyer, S.J., 2001. Pro-apoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science, 292(5517):727–730. [doi:10.1126/science.1059108]

    Article  PubMed  CAS  Google Scholar 

  • White, E., 1996. Life, death, and the pursuit of apoptosis. Gen. Dev., 10(1):1–15. [doi:10.1101/gad.10.1.1]

    Article  CAS  Google Scholar 

  • Wong, H.L., Wang, X., Chang, R.C., Jin, D.Y., Feng, H., Wang, Q., Lo, K.W., Huang, D.P., Yuen, P.W., Takada, K., et al., 2005. Stable expression of EBERs in immortalized nasopharyngeal epithelial cells confers resistance to apoptotic stress. Mol. Carcinogen., 44(2):92–101. [doi:10.1002/mc.20133]

    Article  CAS  Google Scholar 

  • Wu, D., Wallen, H.D., Nunez, G., 1997. Interaction and regulation of subcellular localization of CED-4 by CED-9. Science, 275(5303):1126–1129. [doi:10.1126/science.275.5303.1126]

    Article  PubMed  CAS  Google Scholar 

  • Xu, Z.G., Iwatsuki, K., Oyama, N., Ohtsuka, M., Satoh, M., Kikuchi, S., Akiba, H., Kaneko, F., 2001. The latency pattern of Epstein-Barr virus infection and viral IL-10 expression in cutaneous natural killer/T cell lymphomas. Br. J. Cancer, 84(7):920–925. [doi:10.1054/bjoc.2000.1687]

    Article  PubMed  CAS  Google Scholar 

  • Yakovlev, A.G., Giovanni, S.D., Wang, G., Liu, W., 2004. BOK and NOXA are essential mediators of p53-dependentapoptosis. J. Biol. Chem., 279(27):28367–28374. [doi:10.1074/jbc.M313526200]

    Article  PubMed  CAS  Google Scholar 

  • Yin, C., Knudson, C.M., Korsmeyer, S.J., van Dyke., T., 1997. Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature, 385(6617):637–640. [doi:10.1038/385637a0]

    Article  PubMed  CAS  Google Scholar 

  • Yu, J., Zhang, L., Hwang, P.M., Kinzler, K.W., Vogelstein, B., 2001. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol. Cell, 7(3):673–682. [doi:10.1016/S1097-2765(01)00213-1]

    Article  PubMed  CAS  Google Scholar 

  • Zhang, C.Z., Zhang, J.X., Zhang, L.A., Shi, Z.D., Han, L., Jia, Z.F., Yang, W.D., Wang, G.X., Jiang, T., You, Y.P., et al., 2010. MiR-221 and miR-222 target PUMA to induce cell survival in glioblastoma. Mol. Cancer, 9(299):1–9. [doi:10.1186/1476-4598-9-229]

    Google Scholar 

  • Zimber-Strobl, U., Strobl, L.J., 2001. EBNA2 and Notch signaling in Epstein-Barr virus mediated immortalization of B lymphocytes. Semin. Cancer Biol., 11(6):423–434. [doi:10.1006/scbi.2001.0409]

    Article  PubMed  CAS  Google Scholar 

  • Zinkel, S., Gross, A., Yang, E., 2006. BCL2 family in DNA damage and cell cycle control. Cell Death Differ., 13(8):1351–1359. [doi:10.1038/sj.cdd.4401987]

    Article  PubMed  CAS  Google Scholar 

  • Zong, W.X., Lindsten, T., Ross, A.J., MacGregor, G.R., Thompson, C.B., 2001. BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Gene Dev., 15(12):1481–1486. [doi:10.1101/gad.897601]

    Article  PubMed  CAS  Google Scholar 

  • Zou, H., Henzel, W.J., Liu, X., Lutschg, A., Wang, X., 1997. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell, 90(3):405–413. [doi:10.1016/S0092-8674(00)80501-2]

    Article  PubMed  CAS  Google Scholar 

  • Zuo, J., Thomas, W.A., Haigh, T.A., Fitzsimmons, L., Long, H.M., Hislop, A.D., Taylor, G.S., Rowe, M., 2011. Epstein-Barr virus evades CD4+ T cell responses in lytic cycle through BZLF1-mediated down-regulation of CD74 and the cooperation of vBcl-2. PLoS Pathog., 7(12):e1002455. [doi:10.1371/journal.ppat.1002455]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-rong Mao.

Additional information

Project supported by the National Natural Science Foundation of China (No. 81071937) and the Qianjiang Talents Project of Technology Office in Zhejiang Province, China (No. 2010R10064)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, Q., He, C. & Mao, Zr. Epstein-Barr virus interactions with the Bcl-2 protein family and apoptosis in human tumor cells. J. Zhejiang Univ. Sci. B 14, 8–24 (2013). https://doi.org/10.1631/jzus.B1200189

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1200189

Key words

CLC number

Navigation