Skip to main content
Log in

Neurochip based on light-addressable potentiometric sensor with wavelet transform de-noising

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Neurochip based on light-addressable potentiometric sensor (LAPS), whose sensing elements are excitable cells, can monitor electrophysiological properties of cultured neuron networks with cellular signals well analyzed. Here we report a kind of neurochip with rat pheochromocytoma (PC12) cells hybrid with LAPS and a method of de-noising signals based on wavelet transform. Cells were cultured on LAPS for several days to form networks, and we then used LAPS system to detect the extracellular potentials with signals de-noised according to decomposition in the time-frequency space. The signal was decomposed into various scales, and coefficients were processed based on the properties of each layer. At last, signal was reconstructed based on the new coefficients. The results show that after de-noising, baseline drift is removed and signal-to-noise ratio is increased. It suggests that the neurochip of PC12 cells coupled to LAPS is stable and suitable for long-term and non-invasive measurement of cell electrophysiological properties with wavelet transform, taking advantage of its time-frequency localization analysis to reduce noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Artursson, T., Holmberg, M., 2002. Wavelet transform of electronic tongue data. Sens. Actuators B: Chem., 87(2):379–391. [doi:10.1016/S0925-4005(02)00270-8]

    Article  Google Scholar 

  • Bousse, L., 1996. Whole cell biosensors. Sens. Actuators B: Chem., 34(1–3):270–275. [doi:10.1016/S0925-4005(96)01906-5]

    Article  Google Scholar 

  • Chalfie, M., Perlman, R.L., 1976. Studies of a transplantable rat pheochromocytoma: biochemical characterization and catecholamine secretion. J. Pharmacol. Exp. Ther., 197(3):615–622.

    CAS  PubMed  Google Scholar 

  • Fanigliulo, A., Accossato, P., Adami, M., Lanzi, M., Martinoia, S., Paddeu, S., Parodi, M.T., Rossi, A., Sartore, M., Grattarola, M., et al., 1996. Comparison between a LAPS and an FET-based sensor for cell-metabolism detection. Sens. Actuators B: Chem., 32(1):41–48. [doi:10.1016/0925-4005(96)80107-9]

    Article  Google Scholar 

  • Fromherz, P., 2003. Semiconductor chips with ion channels, nerve cells and brain. Physica E, 16(1):24–34. [doi:10.1016/S1386-9477(02)00578-7]

    Article  Google Scholar 

  • Fromherz, P., Offenhausser, A., Vetter, T., Weis, J., 1991. A neuron-silicon junction: a retzius cell of the leech on an insulated-gate field effect transistor. Science, 252(5010):1290–1293. [doi:10.1126/science.1925540]

    Article  CAS  PubMed  Google Scholar 

  • Gilchrist, K.H., Giovangrandi, L., Whittington, R.H., Kovacs, G.T.A., 2005. Sensitivity of cell-based biosensors to environmental variables. Biosens. Bioelectron., 20(7):1397–1406. [doi:10.1016/j.bios.2004.06.007]

    Article  CAS  PubMed  Google Scholar 

  • Greene, L.A., Tischler, A.S., 1976. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. USA, 73(7):2424–2428. [doi:10.1073/pnas.73.7.2424]

    Article  CAS  PubMed  Google Scholar 

  • Hafeman, D.G., Parce, J.W., McConnell, H.M., 1988. Light-addressable potentiometric sensor for biochemical systems. Science, 240(4856):1182–1185. [doi:10.1126/science.3375810]

    Article  CAS  PubMed  Google Scholar 

  • Hassenklöver, T., Predehl, S., Pilli, J., Ledwolorz, J., Assmann, M., Bickmeyer, U., 2006. Bromophenols, both present in marine organisms and in industrial flame retardants, disturb cellular Ca2+ signaling in neuroendocrine cells (PC12). Aquat. Toxicol., 76(1):37–45. [doi:10.1016/j.aquatox.2005.09.004]

    Article  PubMed  Google Scholar 

  • Hegg, C.C., Miletic, V., 1996. Acute exposure to inorganic lead modifies high-threshold voltage-gated calcium currents in rat PC12 cells. Brain Res., 738(2):333–336. [doi:10.1016/S0006-8993(96)00999-7]

    Article  Google Scholar 

  • Hodgkin, A.L., Huxley, A.F., 1952. A quantitative description of membrane current and its application to conduction and excitation in never. J. Physiol., 117:500–544.

    CAS  PubMed  Google Scholar 

  • Huys, R., Braeken, D., van Meerbergen, B., Winters, K., Eberle, W., Loo, J., Tsvetanova, D., Chen, C., Severi, S., Yitzchaik, S., et al., 2008. Novel concepts for improved communication between nerve cells and silicon electronic devices. Solid State Electron., 52(4):533–539. [doi:10.1016/j.sse.2007.10.025]

    Article  CAS  Google Scholar 

  • Ismail, A.B., Yoshinobu, T., Iwasaki, H., Sugihara, H., Yukimasa, T., Hirata, I., Iwata, H., 2003. Investigation on light-addressable potentiometric sensor as a possible cell-semiconductor hybrid. Biosens. Bioelectron., 18(12):1509–1514. [doi:10.1016/S0956-5663(03)00129-5]

    Article  CAS  PubMed  Google Scholar 

  • Kovacs, G.T.A., 2003. Electronic sensors with living cellular components. Proc. IEEE, 91(6):915–929. [doi:10.1109/JPROC.2003.813580]

    Article  CAS  Google Scholar 

  • Liu, Q., Cai, H., Xu, Y., Li, Y., Li, R., Wang, P., 2006. Olfactory cell-based biosensor: a first step towards a neurochip of bioelectronic nose. Biosens. Bioelectron., 22(2):318–322. [doi:10.1016/j.bios.2006.01.016]

    Article  CAS  PubMed  Google Scholar 

  • Liu, Q., Yu, J., Huang, H., Cai, H., Xu, Y., Li, Y., Li, R., Wang, P., 2007. Embryonic stem cells as a novel cell source of cell-based biosensor. Biosens. Bioelectron., 22(6):810–815. [doi:10.1016/j.bios.2006.03.006]

    Article  CAS  PubMed  Google Scholar 

  • Maher, M.P., Pine, J., Wright, J., Tai, Y.C., 1999. The neurochip: a new multielectrode device for stimulation and recording from cultured neurons. J. Neurosci. Meth., 87(1):45–56. [doi:10.1016/S0165-0270(98)00156-3]

    Article  CAS  Google Scholar 

  • Manganiello, L., Vega, C., Ros, A., Valcarcel, M., 2002. Use of wavelet transform to enhance piezoelectric signals for analytical purposes. Anal. Chim. Acta, 456(1):93–103. [doi:10.1016/S0003-2670(02)00009-0]

    Article  CAS  Google Scholar 

  • Nakagawa, S., Yamamoto, K., 1997. Speech recognition using hidden Markov models based on segmental statistics. Syst. Comput. Jpn, 28(7):31–38. [doi:10.1002/(SICI)1520-684X(19970630)28:7<31::AID-SCJ4>3.3.CO;2-O]

    Article  Google Scholar 

  • Neher, E., 2001. Molecular biology meets microelectronics. Nat. Biotechnol., 19(2):114. [doi:10.1038/84359]

    Article  CAS  PubMed  Google Scholar 

  • Pancrazio, J.J., Whelan, J.P., Borkholder, D.A., Ma, W., Stenger, D.A., 1999. Development and application of cell-based biosensors. Ann. Biomed. Eng., 27(6):697–711. [doi:10.1114/1.225]

    Article  CAS  PubMed  Google Scholar 

  • Parak, W.J., George, M., Domke, J., Radmacher, M., Behrends, J.C., Denyer, M.C., Gaub, H.E., 2000. Can the light-addressable potentiometric sensor (LAPS) detect extracellular potentials of cardiac myocytes? IEEE. Trans. Biomed. Eng., 47(8):1106–1113. [doi:10.1109/10.855939]

    Article  CAS  PubMed  Google Scholar 

  • Sardy, S., Tseng, P., Bruce, A., 2001. Robust wavelet denoising. IEEE Trans. Signal Process., 49(6):1146–1152. [doi:10.1109/78.923297]

    Article  Google Scholar 

  • Slaughter, G., Hobson, R.S., 2009. An impedimetric biosensor based on PC12 cells for the monitoring of exogenous agents. Biosens. Bioelectron., 24(5):1153–1158. [doi:10.1016/j.bios.2008.06.060]

    Article  CAS  PubMed  Google Scholar 

  • Stein, B., George, M., Gaub, H.E., Parak, W.J., 2004. Extracellular measurements of averaged ionic currents with the light-addressable potentiometric sensor (LAPS). Sens. Actuators B: Chem., 98(2–3):299–304. [doi:10.1016/j.snb.2003.10.034]

    Article  Google Scholar 

  • Stenger, D.A., Gross, G.W., Keefer, E.W., Shaffer, K.M., Andreadis, J.D., Ma, W., Pancrazio, J.J., 2001. Detection of physiologically active compounds using cell-based biosensors. Trends Biotechnol., 19(8):304–309. [doi:10.1016/S0167-7799(01)01690-0]

    Article  CAS  PubMed  Google Scholar 

  • Wang, P., Liu, Q., 2009. Cell-based Biosensors: Principles and Applications. Artech House Publisher, Norwood, MA, USA, p.1–10.

    Google Scholar 

  • Wang, P., Xu, G., Qin, L., Xu, Y., Li, Y., Li, R., 2005. Cell-based biosensors and its application in biomedicine. Sens. Actuators B: Chem., 108(1–2):576–584. [doi:10.1016/j.snb.2004.11.056]

    Google Scholar 

  • Xu, G., Ye, X., Qin, L., Xu, Y., Li, Y., Li, R., Wang, P., 2005. Cell-based biosensors based on light-addressable potentiometric sensors for single cell monitoring. Biosens. Bioelectron., 20(9):1757–1763. [doi:10.1016/j.bios.2004.06.037]

    Article  CAS  PubMed  Google Scholar 

  • Zhu, K., Wong, Y.S., Hong, G.S., 2009. Wavelet analysis of sensor signals for tool condition monitoring: a review and some new results. Int. J. Mach. Tool. Manu., 49(7–8):537–553. [doi:10.1016/j.ijmachtools.2009.02.003]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wang.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 30700167 and 60725102), the Project of State Key Laboratory of Transducer Technology of China (No. SKT0702), the Zhejiang Provincial Natural Science Foundation of China (No. Y2080673), and the Scientific Research Fund of the Education Department of Zhejiang Province, China (No. Y200909323)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Qj., Ye, Ww., Yu, H. et al. Neurochip based on light-addressable potentiometric sensor with wavelet transform de-noising. J. Zhejiang Univ. Sci. B 11, 323–331 (2010). https://doi.org/10.1631/jzus.B0900349

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B0900349

Key words

CLC number

Navigation