Skip to main content
Log in

A two-parameter stretched exponential function for dynamic water vapor sorption of cement-based porous materials

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Finding a simple analytical model to represent dynamic water-vapor sorption (DWVS) in cement-based porous materials (CBPMs) is a challenging task because the physical–chemical interactions between water molecules and materials are quite complex. This paper presents a two-parameter stretched exponential function called the fractional kinetic (FK) model to represent the DWVS process in CBPMs. The FK model has a flexible and robust formula that is determined by two key parameters: the kinetic order n and the time index \(\alpha\). With conditioned n and \(\alpha\) values, the FK model reduces to the classic exponential model and first- and second-order sorption models. The DWVS data of hardened blended cement-paste samples with different shapes was used to test the applicability of the FK model. The FK model can represent the early sorption data that is generally described by Fick’s diffusion law and the late sorption data that matches the classic exponential model. Sorption of water vapor in CBPMs is a complex time-dependent process that is associated with the interactions between water molecules and the contact surfaces, as well as the microstructures of the cement-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Here, we use Q to represent the quantity (either mass, volume, number, or moles) by sorption and M to specifically represent the sorption mass.

References

  1. Maruyama I, Nishioka Y, Igarashi G, Matsui K (2014) Microstructural and bulk property changes in hardened cement paste during the first drying process. Cem Concr Res 58:20–34

    Article  Google Scholar 

  2. Maruyama I, Sasano H, Nishioka Y, Igarashi G (2014) Strength and Young’s modulus change in concrete due to long-term drying and heating up to \(90\,^\circ \text{ C }\). Cem Concr Res 66:48–63

    Article  Google Scholar 

  3. Maruyama I, Igarashi G, Nishioka Y (2015) Bimodal behavior of C–S–H interpreted from short-term length change and water vapor sorption isotherms of hardened cement paste. Cem Concr Res 73:158–168

    Article  Google Scholar 

  4. Saeidpour M, Wadso L (2015) Moisture equilibrium of cement based materials containing slag or silica fume and exposed to repeated sorption cycles. Cem Concr Res 69:88–95

    Article  Google Scholar 

  5. Zeng Q, Zhang DD, Sun H, Li K (2014) Characterizing pore structure of cement blend pastes using water vapor sorption analysis. Mater Charact 95:72–84

    Article  Google Scholar 

  6. Wu M, Johannesson B, Geiker M (2014) Application of water vapor sorption measurements for porosity characterization of hardened cement pastes. Constr Build Mater 66:621–633

    Article  Google Scholar 

  7. Wu M, Johannesson B, Geiker M (2014) A study of the water vapor sorption isotherms of hardened cement pastes: possible pore structure changes at low relative humidity and the impact of temperature on isotherms. Cem Concr Res 56:97–105

    Article  Google Scholar 

  8. Snoeck D, Velasco LF, Mignon A, Van Vlierberghe S, Dubruel P, Lodewyckx P, De Belie N (2014) The influence of different drying techniques on the water sorption properties of cement-based materials. Cem Concr Res 64:54–62

    Article  Google Scholar 

  9. Baroghel-Bouny V (2007) Water vapour sorption experiments on hardened cementitious materials: part I: essential tool for analysis of hygral behaviour and its relation to pore structure. Cem Concr Res 37:414–37

    Article  Google Scholar 

  10. Gustavsson C, Piculell L (2016) Isotherms and kinetics of water vapor sorption/desorption for surface films of polyionsurfactant ion complex salts. J Phys Chem B 120(27):6778–6790

    Article  Google Scholar 

  11. Dubin E, Wadso L, Plank L (2011) A sorption balance study of water vapour sorption on anhydrous cement minerals and cement constituents. Cem Concr Res 41:1196–1204

    Article  Google Scholar 

  12. Sheokand S, Modi SR, Bansal AK (2016) Quantification of low levels of amorphous content in crystalline celecoxib using dynamic vapor sorption (DVS). Eur J Pharm Biopharm 102:77–86

    Article  Google Scholar 

  13. Zeng Q, Wang Y, Li K (2014) Uniform model for moisture transport in porous materials and its application to concrete at selected Chinese regions. J Mater Civ Eng 26:05014001

    Article  Google Scholar 

  14. Poyet S, Charles S, Honoré N, L’hostis V (2011) Assessment of the unsaturated water transport properties of an old concrete: determination of the pore-interaction factor. Cem Concr Res 41:1015–1023

    Article  Google Scholar 

  15. Apeagyei AK, Grenfell JR, Airey GD (2015) Application of Fickian and non-Fickian diffusion models to study moisture diffusion in asphalt mastics. Mater Struct 48(5):1461–1474

    Article  Google Scholar 

  16. Saeidpour M, Wadso L (2015) Evidence for anomalous water vapor sorption kinetics in cement based materials. Cem Concr Res 70:60–66

    Article  Google Scholar 

  17. Baroghel-Bouny V, Mainguy M, Lassabatere T, Coussy O (1999) Characterization and identification of equilibrium and transfer moisture properties for ordinary and high-performance cementitious materials. Cem Concr Res 29:1225–1238

    Article  Google Scholar 

  18. Mainguy M, Coussy O, Baroghel-Bouny V (2001) Role of air pressure in drying of weakly permeable materials. J Eng Mech 127(6):582–592

    Article  Google Scholar 

  19. Litavcova E, Korjenic A, Korjenic S, Pavlus M, Sarhadov I, Seman J, Bednar T (2014) Diffusion of moisture into building materials: a model for moisture transport. Energy Build 68:558–561

    Article  Google Scholar 

  20. Anderberg A, Wadso L (2008) Method for simultaneous determination of sorption isotherms and diffusivity of cement-based materials. Cem Concr Res 38:89–94

    Article  Google Scholar 

  21. Willems HH, Van Der Velden KB (1984) A gravimetric study of water vapour sorption on hydrated cement pastes. Thermochim Acta 82:211–220

    Article  Google Scholar 

  22. Hall C (2007) Anomalous diffusion in unsaturated flow: fact or fiction? Cem Concr Res 37:378–385

    Article  Google Scholar 

  23. Hansen CM (2010) The significance of the surface condition in solutions to the diffusion equation: explaining “anomalous” sigmoidal, Case II, and Super Case II absorption behavior. Eur Polym J 46:651–662

    Article  Google Scholar 

  24. Petropoulos JH, Sanopoulou M, Papadokostaki KG (2011) Physically insightful modeling of non-Fickian kinetic regimes encountered in fundamental studies of isothermal sorption of swelling agents in polymeric media. Eur Polym J 47:2053–2062

    Article  Google Scholar 

  25. Su NH (2009) Equations of anomalous absorption onto swelling porous media. Mater Lett 63:2483–2485

    Article  Google Scholar 

  26. Kuntz M, Lavallee P (2001) 4) Experimental evidence and theoretical analysis of anomalous diffusion during water infiltration in porous building materials. J Phys D: Appl Phys 34:2547. doi:10.1088/0022-3727/34/16/322

    Article  Google Scholar 

  27. Quenard D, Sallee H (1992) Water vapour adsorption and transfer in cement-based materials: a network simulation. Mater Struct 25(9):515–522

    Article  Google Scholar 

  28. Ishida T, Maekawa K, Kishi T (2007) Enhanced modeling of moisture equilibrium and transport in cementitious materials under arbitrary temperature and relative humidity history. Cem Concr Res 37:565–578

    Article  Google Scholar 

  29. Kopelman R (1988) Fractal reaction kinetics. Science 241:1620–1626

    Article  Google Scholar 

  30. Jurlewicz A, Weron K (1999) A general probabilistic approach to the universal relaxation response of complex systems. Cell Mol Biol Lett 4(1):55–86

    Google Scholar 

  31. Niven RK (2006) \(q\)-Exponential structure of arbitrary-order reaction kinetics. Chem Eng Sci 61:3785–3790

    Article  Google Scholar 

  32. Tsallis C (2009) Introduction to nonextensive statistical mechanics: approaching a complex world. Springer, New York

    MATH  Google Scholar 

  33. Brouers F, Sotolongo-Costa O (2006) Generalized fractal kinetics in complex systems (application to biophysics and biotechnology). Phys A 368:165–175

    Article  Google Scholar 

  34. Haerifar M, Azizian S (2012) Fractal-like adsorption kinetics at the solid/solution interface. J Phys Chem C 116:13111–13119

    Article  Google Scholar 

  35. Li Q, Xu S, Zeng Q (2016) A fractional kinetic model for drying of cement-based porous materials. Dry Technol 34(10):1231–1242

    Article  Google Scholar 

  36. Zeng Q, Zheng D, Chen B (2016). Drying of cement-based porous materials: a fractional kinetic approach. “Moisture in materials and structures”. In: Proceedings of the international RILEM conference on materials, systems and structures in civil engineering. Technical University of Denmark, Lyngby, 22–24 Aug 2016, pp 41–50

  37. Hou D, Zhao T, Ma H, Li Z (2015) Reactive molecular simulation on water confined in the nanopores of the calcium silicate hydrate gel: structure, reactivity, and mechanical properties. J Phys Chem C 119:1346–1358

    Article  Google Scholar 

  38. Hou D, Ma H, Zhu Y, Li Z (2014) Calcium silicate hydrate from dry to saturated state: structure, dynamics and mechanical properties. Acta Mater 67:81–94

    Article  Google Scholar 

  39. Hou D, Li L (2014) Molecular dynamics study of water and ions transport in nano-pore of layered structure: a case study of tobermorite. Microporous Mesoporous Mater 195:9–20

    Article  Google Scholar 

  40. Hou D, Zhao T, Jin Z, Li Z (2015) Structure, reactivity and mechanical properties of water ultra-confined in the ordered crystal: a case study of jennite. Microporous Mesoporous Mater 204:106–114

    Article  Google Scholar 

  41. Zeng Q, Li K, Fen-Chong T, Dangla P (2012) Pore structure characterization of cement pastes blended with high-volume fly-ash. Cem Concr Res 42:194–204

    Article  Google Scholar 

  42. Zeng Q, Li K (2015) Reaction and microstructure of cementfly-ash system. Mater Struct 48(6):1703–1716

    Article  MathSciNet  Google Scholar 

  43. Zeng Q, Li K, Fen-Chong T, Dangla P (2016) Pore structure of cement pastes through NAD and MIP analysis. Adv Cem Res 28(1):23–32

    Article  Google Scholar 

  44. Zeng Q, Luo M, Pang X, Li L, Li K (2013) Surface fractal dimension: an indicator to characterize the microstructure of cement-based porous materials. Appl Surf Sci 282:302–307

    Article  Google Scholar 

  45. Zeng Q, Li K, Fen-Chong T, Dangla P (2010) Surface fractal analysis of pore structure of high-volume fly-ash cement pastes. Appl Surf Sci 257:762–768

    Article  Google Scholar 

  46. Zeng Q, Li K, Fen-Chong T, Dangla P (2012) Analysis of pore structure, contact angle and pore entrapment of blended cement pastes from mercury porosimetry data. Cem Concr Compos 34(9):1053–1060

    Article  Google Scholar 

  47. Li K, Zeng Q, Luo M, Pang X (2014) Effect of self-desiccation on the pore structure of paste and mortar incorporating 70% GGBS. Constr Build Mater 51:329–337

    Article  Google Scholar 

  48. Fischer N, Haerdtl R, McDonald PJ (2015) Observation of the redistribution of nanoscale water filled porosity in cement based materials during wetting. Cem Concr Res 68:148–155

    Article  Google Scholar 

  49. Rodin V, Valori A, McDonald PJ (2011) A 1H double-quantum-filtered NMR study of water in cement pastes. New J Phys 13:035017. doi:10.1088/1367-2630/13/3/035017

    Article  Google Scholar 

  50. Borland L, Pennini F, Plastino AR, Plastino A (1999) The nonlinear Fokker–Planck equation with state-dependent diffusion-A nonextensive maximum entropy approach. Eur Phys J B 12:285–297

    Article  Google Scholar 

  51. Burr IW (1942) Cumulative frequency functions. Ann Math Stat 13:215–232

    Article  MathSciNet  MATH  Google Scholar 

  52. Plazinski W (2013) Binding of heavy metals by algal biosorbents. Theoretical models of kinetics, equilibria and thermodynamics. Adv Colloid Interface Sci 197–198:58–67

    Article  Google Scholar 

  53. Bashiri H (2011) Desorption kinetics at the solid/solution interface: a theoretical description by statistical rate theory for close-to-equilibrium systems. J Phys Chem C 115:5732–5739

    Article  Google Scholar 

  54. Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293–297

    MATH  Google Scholar 

  55. Lopes EC, dos Anjos FS, Vieira EF, Cestari AR (2003) An alternative Avrami equation to evaluate kinetic parameters of the interaction of Hg (II) with thin chitosan membranes. J Colloid Interface Sci 263(2):542–547

    Article  Google Scholar 

  56. Li K, Pang X (2014) Sorption of radionuclides by cement-based barrier materials. Cem Concr Res 65:52–57

    Article  Google Scholar 

  57. Ahmad-Qasem MH, Barrajon-Catalan E, Micol V, Cárcel JA, Garcia-Perez JV (2013) Influence of air temperature on drying kinetics and antioxidant potential of olive pomace. J Food Eng 119:516–524

    Article  Google Scholar 

  58. Delgado J, Ramos NMM, De Freitas VP (2006) Can moisture buffer performance be estimated from sorption kinetics? J Build Phys 29:281–299

    Article  Google Scholar 

  59. Johannesson B (2002) Prestudy on diffusion and transient condensation of water vapor in cement mortar. Cem Concr Res 32:955–962

    Article  Google Scholar 

  60. Tada S, Watanabe K (2005) Dynamic determination of sorption isotherm of cement based materials. Cem Concr Res 35:2271–2277

    Article  Google Scholar 

  61. McDonald PJ, Rodin V, Valori A (2010) Characterisation of intra- and inter-C–S–H gel pore water in white cement based on an analysis of NMR signal amplitudes as a function of water content. Cem Concr Res 40:1656–1663

    Article  Google Scholar 

  62. Hall C, Hoff WD, Taylor SC, Wilson MA, Yoon BG, Reinhardt HW, Sosoro M, Meredith P, Donald AM (1995) Water anomaly in capillary liquid absorption by cement-based materials. J Mater Sci Lett 14:1178–1181

    Article  Google Scholar 

  63. Griffin IM, Hall C, Hamilton A (2014) Unusual water transport properties of some traditional Scottish shale bricks. Mater Struct 47:1761–1771

    Article  Google Scholar 

  64. Ranaivomanana H, Verdier J, Sellier A, Bourbon X (2013) Prediction of relative permeabilities and water vapor diffusion reduction factor for cement-based materials. Cem Concr Res 48:53–63

    Article  Google Scholar 

  65. Jennings HM (2008) Refinements to colloid model of CSH in cement: CM-II. Cem Concr Res 38:275–289

    Article  Google Scholar 

  66. Vandamme M, Ulm FJ (2009) Nanogranular origin of concrete creep. Proc Natl Acad Sci USA 106:10552–10557

    Article  Google Scholar 

  67. Plociniczak L (2015) Analytical studies of a time-fractional porous medium equation. Derivation, approximation and applications. Commun Nonlinear Sci Numer Simul 24:169–183

    Article  MathSciNet  Google Scholar 

  68. Sun H, Meerschaert MM, Zhang Y, Zhu J, Chen W (2013) A fractal Richards’ equation to capture the non-Boltzmann scaling of water transport in unsaturated media. Adv Water Resour 52:292–295

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Saeidpour for kindly providing the sorption data of the cement-based materials.

Funding

This study was funded by the National Natural Science Foundation of China (Grant Number 51408536) and Open Fund of Jiangsu Key Laboratory of Construction Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zeng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Q., Xu, S. A two-parameter stretched exponential function for dynamic water vapor sorption of cement-based porous materials. Mater Struct 50, 128 (2017). https://doi.org/10.1617/s11527-017-0997-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-017-0997-7

Keywords

Navigation