Skip to main content
Log in

Carbonation of concrete: the role of CO2 concentration, relative humidity and CO2 buffer capacity

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

In this study, the effect of CO2 concentration and ambient relative humidity (RH) on accelerated and natural carbonation of 18 concrete mixtures produced with nine different cement types is investigated. Increasing the CO2 concentration from 0.045 to 1 and 4 % at 57 % RH does not alter the relative carbonation resistance between the concrete mixtures. The increase of RH from 57 to 70 and 80 % RH at 4 % CO2 shows a water-to-cement ratio and cement-specific effect that affects the relative carbonation resistance between the concrete mixtures. The carbonation resistance at 4 % CO2 and 57 % RH allows assessing the carbonation resistance of concrete in sheltered and with restrictions in unsheltered outdoor exposure. The carbonation resistance below 70 % RH is mainly governed by the CO2 buffer capacity. However, in the accelerated tests at 80 % RH and in the unsheltered outdoor exposure capillary condensation is of increased importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wierig HJ (1984) Longtime studies on the carbonation of concrete under normal outdoor exposure. In: Proceedings of the RILEM seminar on the durability of concrete structures under normal outdoor exposure, pp 239–49

  2. Papadakis VG (2000) Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress. Cem Concr Res 30:291–299

    Article  Google Scholar 

  3. Rozière E, Loukili A, Cussigh F (2009) A performance based approach for durability of concrete exposed to carbonation. Constr Build Mater 23:190–199

    Article  Google Scholar 

  4. Thomas MDA, Matthews JD (1992) Carbonation of fly ash concrete. Mag Concr Res 44:217–228

    Article  Google Scholar 

  5. De Ceukelaire L, Van Nieuwenburg D (1993) Accelerated carbonation of a blast-furnace cement concrete. Cem Concr Res 23:442–452

    Article  Google Scholar 

  6. Chen CT, Ho CW (2013) Influence of cyclic humidity on carbonation of concrete. J Mater Civ Eng 25:1929–1935

    Article  Google Scholar 

  7. Sanjuàn MA, Andrade C, Cheyrezy M (2003) Concrete carbonation tests in natural and accelerated conditions. Adv Cem Res 15:171–180

    Article  Google Scholar 

  8. Turcry P, Oksri-Nelfia L, Younsi A, Aït-Mokhtar A (2014) Analysis of an accelerated carbonation test with severe preconditioning. Cem Concr Res 57:70–78

    Article  Google Scholar 

  9. Galan I, Andrade C, Castellote M (2013) Natural and accelerated CO2 binding kinetics in cement paste at different relative humidities. Cem Concr Res 49:21–28

    Article  Google Scholar 

  10. Parrot LJ (1991) Factors influencing relative humidity in concrete. Mag Concr Res 43:45–52

    Article  Google Scholar 

  11. Andrade C, Sarría J, Alonso C (1999) Relative humidity in the interior of concrete exposed to natural and artificial weathering. Cem Concr Rese 29:1249–1259

    Article  Google Scholar 

  12. Tuutti K (1982) Corrosion of steel in concrete. Svenska Forskningsinstitutet för cement och betong, Stockholm

    Google Scholar 

  13. González JA, Andrade C (1982) Effect of carbonation, chlorides and relative ambient humidity on the corrosion of galvanized rebars embedded in concrete. Br Corros J 17:21–28

    Article  Google Scholar 

  14. Groves GW, Brough A, Richardson IG, Dobson CM (1991) Progressive changes in the structure of hardened C3S cement pastes due to carbonation. J Am Ceram Soc 74:2891–2896

    Article  Google Scholar 

  15. Goñi S, Gaztañaga MT, Guerrero A (2002) Role of cement type on carbonation attack. J Mater Res 17:1834–1842

    Article  Google Scholar 

  16. Lang E (2003) Einfluss unterschiedlicher Karbonatphasen auf den Frost-Tausalzwiderstand—Labor. und Praxisverhalten. Beton Informationen 5:39–57

    Google Scholar 

  17. Anstice DJ, Page CL, Page MM (2005) The pore solution phase of carbonated cement pastes. Cem Concr Res 35:377–383

    Article  Google Scholar 

  18. Castellote M, Fernandez L, Andrade C, Alonso C (2009) Chemical changes and phase analysis of OPC pastes carbonated at different CO2 concentrations. Mater Struct 42:515–525

    Article  Google Scholar 

  19. Hyvert N, Sellier A, Duprat F, Rougeau P, Francisco P (2010) Dependency of C–S–H carbonation rate on CO2 pressure to explain transition from accelerated tests to natural carbonation. Cem Concr Res 40:1582–1589

    Article  Google Scholar 

  20. Morandeau A, Thiery M, Dangla P (2014) Investigation of the carbonation mechanism of CH and CSH in terms of kinetics, microstructure changes and moisture properties. Cem Concr Res 56:153–170

    Article  Google Scholar 

  21. Morandeau A, Thiéry M, Dangla P (2015) Impact of accelerated carbonation on OPC cement paste blended with fly ash. Cem Concr Res 67:226–236

    Article  Google Scholar 

  22. Auroy M, Poyet S, Le Bescop P, Torrenti JM, Charpentier T, Moskura M, Bourbon X (2015) Impact of carbonation on unsaturated water transport properties of cement-based materials. Cem Concr Res 74:44–58

    Article  Google Scholar 

  23. Leemann A, Nygaard P, Kaufmann J, Loser R (2015) Relation between carbonation resistance, mix design and exposure of mortar and concrete. Cem Concr Compos 62:33–43

    Article  Google Scholar 

  24. Sevelsted TF, Skibsted J (2015) Carbonation of C–S–H and C–A–S–H samples studied by 13C, 27Al and 29Si MAS NMR spectroscopy. Cem Concr Res 71:56–65

    Article  Google Scholar 

  25. Kropp J (1983) Karbonatisierung und Transportvorgänge in Zementstein. Doctoral Thesis, University of Karlsruhe, Germany

  26. Papadakis VG, Vayenas CG, Fardis MN (1991) Physical and chemical characteristics affecting the durability of concrete. Mater J 88:186–196

    Google Scholar 

  27. Papadakis VG, Vayenas CG, Fardis MN (1991) Fundamental modeling and experimental investigation of concrete carbonation. Mater J 88:363–373

    Google Scholar 

  28. Steffens A, Dinkler D, Ahrens H (2002) Modeling carbonation for corrosion risk prediction of concrete structures. Cem Concr Res 32:935–941

    Article  Google Scholar 

  29. Saetta AV, Vitaliani RV (2004) Experimental investigation and numerical modeling of carbonation process in reinforced concrete structures: part I: theoretical formulation. Cem Concr Res 34:571–579

    Article  Google Scholar 

  30. Bary B, Sellier A (2004) Coupled moisture—carbon dioxide–calcium transfer model for carbonation of concrete. Cem Concr Res 34:1859–1872

    Article  Google Scholar 

  31. Diamond S (1971) A critical comparison of mercury porosimetry and capillary condensation pore size distributions of portland cement pastes. Cem Concr Res 1:531–545

    Article  Google Scholar 

  32. Baroghel-Bouny V (2007) Water vapour sorption experiments on hardened cementitious materials part I: essential tool for analysis of hygral behaviour and its relation to pore structure. Cem Concr Res 37:414–437

    Article  Google Scholar 

  33. SN 505 262/1 (2013) Betonbau—Ergänzende Festlegungen, Anhang I, Karbonatisierungswiderstand, SIA Zürich

  34. VAB (2015) Ringversuch Karbonatisierungswiderstand, Vereinigung Akkreditierter Baustoffprüflabors. Empa Bericht Nr. 5214007288, Dübendorf

  35. Thiery M, Dangla P, Belin P, Habert G, Roussel N (2013) Carbonation kinetics of a bed of recycled concrete aggregates: a laboratory study on model materials. Cem Concr Res 46:50–65

    Article  Google Scholar 

  36. Lawrence CD (1984) Transport of oxygen through concrete. In: Glasser FP (ed) The chemistry and chemically-related properties of cement. British Ceramic Society proceedings, vol 35, pp 277–293

  37. Buenfeld NR, Okundi E (1998) Effect of cement content on transport in concrete. Mag Concr Res 50:339–351

    Article  Google Scholar 

  38. Villani C, Loser R, West MJ, Di Bella C, Lura P, Weiss JW (2014) An inter lab comparison of gas transport testing procedures: oxygen permeability and oxygen diffusivity. Cem Concr Compos 53:357–366

    Article  Google Scholar 

  39. EN 12390-3 (2002) Testing hardened concrete—part 3: compressive strength of test specimens

  40. Cook RA, Hover KC (1999) Mercury porosimetry of hardened cement pastes. Cem Concr Res 29:933–943

    Article  Google Scholar 

  41. Atahan HN, Oktar ON, Tasdemir MA (2009) Effects of water–cement ratio and curing time on the critical pore width of hardened cement paste. Constr Build Mater 23:1196–1200

    Article  Google Scholar 

  42. Manmohan D, Metha PK (1981) Influence of pozzolanic, slag, and chemical admixtures on pore size distribution and permeability of hardened cement pastes. Cem Concr Aggreg 3:63–67

    Article  Google Scholar 

  43. Frías M, Cabrera J (2000) Pore size distribution and degree of hydration of metakaolin–cement pastes. Cem Concr Res 30:561–569

    Article  Google Scholar 

  44. Aldea CM, Young F, Wang K, Shah SP (2000) Effects of curing conditions on properties of concrete using slag replacement. Cem Concr Res 30:465–472

    Article  Google Scholar 

  45. Chindaprasirt P, Jaturapitakkul C, Sinsiri T (2005) Effect of fly ash fineness on compressive strength and pore size of blended cement paste. Cem Concr Compos 27:425–428

    Article  Google Scholar 

  46. Powers TC, Brownyard TL (1946) Studies of the physical properties of hardened cement paste. ACI J Proc 43:249–336

    Google Scholar 

  47. Parrott LJ (1992) Variations of water absorption rate and porosity with depth from an exposed concrete surface: effects of exposure conditions and cement type. Cem Concr Res 22:1077–1088

    Article  Google Scholar 

  48. McCarter WJ, Watson DW, Chrisp TM (2001) Surface zone concrete: drying, absorption and moisture distribution. J Mater Civ Eng 13:49–57

    Article  Google Scholar 

  49. Patel RG, Killoh DC, Parrott LJ, Gutteridge WA (1988) Influence of curing at different relative humidities upon compound reactions and porosity in Portland cement paste. Mater Struct 21:192–197

    Article  Google Scholar 

  50. Parrott LJ (1995) Influence of cement type and curing on the drying and air permeability of cover concrete. Mag Concr Res 47:103–111

    Article  Google Scholar 

  51. Houst YF, Wittmann FH (1994) Influence of porosity and water content on the diffusivity of CO2 and O2 through hydrated cement paste. Cem Concr Res 24:1165–1176

    Article  Google Scholar 

  52. Fatthudi NI (1988) Concrete carbonation as influenced by curing regime. Cem Concr Res 18:426–430

    Article  Google Scholar 

  53. Osborne GJ (1989) Carbonation and permeability of blastfurnace slag cement concretes from field structures. ACI Spec Publ 114:1209–1238

    Google Scholar 

  54. Thomas MDA, Matthews JD, Haynes CA (1992) Carbonation of fly ash concrete. ACI Spec Publ 19:539–556

    Google Scholar 

  55. Younsi A, Turcry Ph, Aït-Mokhtar A, Staquet S (2013) Accelerated carbonation of concrete with high content of mineral additions: effect of interactions between hydration and drying. Cem Concr Res 43:25–33

    Article  Google Scholar 

  56. Lothenbach B, Le Saout G, Gallucci E, Scrivener K (2008) Influence of limestone on the hydration of Portland cements. Cem Concr Res 38:848–860

    Article  Google Scholar 

  57. Parrot LJ, Killoh DC (1984) Prediction of cement hydration. Proc Br Ceram Soc 35:41–53

    Google Scholar 

  58. Feng X, Garboczi EJ, Bentz DP, Stutzman PE, Mason TO (2004) Estimation of the degree of hydration of blended cement pastes by a scanning electron microscope point-counting procedure. Cem Concr Res 34:1787–1793

    Article  Google Scholar 

  59. Lumley JS, Gollop RS, Moir GK, Taylor HFW (1996) Degrees of reaction of the slag in some blends with Portland cements. Cem Concr Res 26:139–151

    Article  Google Scholar 

  60. Pane I, Hansen W (2005) Investigation of blended cement hydration by isothermal calorimetry and thermal analysis. Cem Concr Res 35:1155–1164

    Article  Google Scholar 

  61. Kocaba V, Gallucci E, Scrivener KL (2012) Methods for determination of degree of reaction of slag in blended cement pastes. Cem Concr Res 42:511–525

    Article  Google Scholar 

  62. Shi Z, Lothenbach B, Geiker MR, Kaufmann J, Leemann A, Ferreiro S, Skibsted J (2016) Experimental studies and thermodynamic modeling of the carbonation of Portland cement, metakaolin and limestone mortars. Cem Concr Res. doi:10.1016/j.cemconres.2016.06.006

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank P. Lura for the careful review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Leemann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leemann, A., Moro, F. Carbonation of concrete: the role of CO2 concentration, relative humidity and CO2 buffer capacity. Mater Struct 50, 30 (2017). https://doi.org/10.1617/s11527-016-0917-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-016-0917-2

Keywords

Navigation