Skip to main content
Log in

An accelerated sulfate resistance test for concrete

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The sulfate resistance of concrete was tested using drying-immersion cycles of varying duration in different sulfate solutions. The measured expansion in the different protocols showed a correlation to the sulfate profiles in the test specimens determined by EDX. Based on the magnitude of expansion and the test duration, a suitable protocol for testing job-site concrete was identified. A matrix of 20 concrete mixtures was tested with this protocol. The test permitted to distinguish the effect of cement type, w/c and paste volume on expansion. Measurements of the dynamic E-modulus made it possible to link expansion and mechanical damage and to define a limit value for expansion. As this test appears to be suitable to determine the potential of concrete for expansion induced by ettringite formation due to sulfate ingress, it was introduced into the Swiss norms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. St John DA (1982) An unusual case of ground water sulfate attack on concrete. Cem Concr Res 12:633–639

    Article  Google Scholar 

  2. Diamond S, Lee RJ (1999) Microstructural alterations associated with sulfate attack in permeable concretes. Materials science of concrete: sulfate attack mechanisms. American Ceramic Society, Westerville, pp 123–173

    Google Scholar 

  3. Sahu S, Badger S, Thaulow N (2002) Evidence of thaumasite formation in Southern California concrete. Cem Concr Compos 24:379–384

    Article  Google Scholar 

  4. Leemann A, Loser R (2011) Analysis of concrete in a vertical ventilation shaft exposed to sulfate-containing groundwater for 45 years. Cem Concr Compos 33:74–83

    Article  Google Scholar 

  5. Bellmann F, Erfurt W, Ludwig HM (2012) Field performance of concrete exposed to sulphate and low pH conditions from natural and industrial sources. Cem Concr Compos 34:86–93

    Article  Google Scholar 

  6. Mittermayr F, Baldermann A, Kurta C, Rinder T, Klammer D, Leis A, Tritthart J, Dietzel M (2013) Evaporation—a key mechanism for the thaumasite form of sulfate attack. Cem Concr Res 49:55–64

    Article  Google Scholar 

  7. Mittermayr F, Bauer C, Klammer D, Böttcher ME, Leis A, Escher P, Dietzel M (2012) Concrete under sulphate attack: an isotope study on sulphur sources. Isot Environ Healt Stud 48:105–117

    Article  Google Scholar 

  8. Romer M, Holzer L, Pfiffner M (2003) Swiss tunnel structures: concrete damage by formation of thaumasite. Cem Concr Compos 25:1111–1117

    Article  Google Scholar 

  9. Pfiffner M, Holzer L (2001) Schädigungsmechanismen der Betonkorrosion in Tunnelbauwerken. Bundesamt für Strassen, ASTRA Report 1999/145, Bern (in German)

  10. Thorvaldson T (1952) Chemical aspects of the durability of cement products. In: Proceedings of the 3rd international symposium on chemistry of cement, London, pp 436–465

  11. Marchand J, Skalny J (1999) Sulfate attack mechanism. Am Ceram Soc, Westerville, pp 123–174

    Google Scholar 

  12. Skalny J, Marchand J, Odler I (2002) Sulfate attack on concrete. Spon Press, London

    Google Scholar 

  13. Nehdi ML, Suleiman AR, Soliman AM (2014) Investigation of concrete exposed to dual sulfate attack. Cem Concr Res 64:42–53

    Article  Google Scholar 

  14. Abubaker F, Lynsdale C, Cripps J (2014) Investigation of concrete–clay interaction with regards to the thaumasite form of sulfate attack. Constr Build Mater Int Conf Sustain Constr Mater Technol 67A:88–94

    Article  Google Scholar 

  15. Peyvandi A, Holmes D, Soroushian P, Balachandra AM (2014) Monitoring of sulfate attack in concrete by 27Al and 29Si MAS NMR spectroscopy. J Mater Civil Eng. doi:10.1061/(ASCE)MT.1943-5533.0001175

    Google Scholar 

  16. Bentz DP, Davis JM, Peltz MA, Snyder KA (2014) Influence of internal curing and viscosity modifiers on resistance to sulfate attack. Mater Struct 47:581–589

    Article  Google Scholar 

  17. SN 505262/1 (2003) Beton—Ergänzende Eigenschaften (available in German and French)

  18. Loser R, Leemann A, Niederhauser, R (2011) Prüfung des Sulfatwiderstandes von Beton nach SIA 262/1, Anhang D: Anwendbarkeit und Relevanz für die Praxis. ASTRA Forschungsbericht Nr. 1355, Bern (in German)

  19. Leemann A, Loser R (2012) Accelerated sulfate resistance test for concrete—chemical and microstructural aspects. In: Second international conference on microstructural-related durability of cementitious composites, Amsterdam, paper 141

  20. Lawrence CD (1984) Transport of oxygen through concrete. In: Glasser FP (ed) The chemistry and chemically-related properties of cement, vol 35. British Ceramic Society, London, pp 277–293

    Google Scholar 

  21. Buenfeld NR, Okundi E (1998) Effect of cement content on transport in concrete. Mag Concr Res 50:339–351

    Article  Google Scholar 

  22. Villani C, Loser R, West MJ, Di Bella C, Lura P, Weiss JW (2014) An inter lab comparison of gas transport testing procedures: oxygen permeability and oxygen diffusivity. Cem Concr Compos 53:357–366

    Article  Google Scholar 

  23. Gollop RS, Taylor HFW (1995) Microstructural and microanalytical studies of sulfate attack III. Sulfate-resisting Portland cement: reactions with sodium and magnesium sulfate solutions. Cem Concr Res 25:1581–1590

    Article  Google Scholar 

  24. Gollop RS, Taylor HFW (1996) Microstructural and microanalytical studies of sulfate attack. IV. Reactions of a slag cement paste with sodium and magnesium sulfate solutions. Cem Concr Res 26:1013–1028

    Article  Google Scholar 

  25. Al-Amoudi OSB, Maslehuddin M, Saadi MM (1995) Effect of magnesium sulfate and sodium sulfate on the durability performance of plain and blended cements. ACI Mater J 92:15–24

    Google Scholar 

  26. Kunther W, Lothenbach B, Scrivener KL (2013) On the relevance of volume increase for the length changes of mortar bars in sulfate solutions. Cem Concr Res 46:23–29

    Article  Google Scholar 

  27. SN 505262/1 (2013) Beton—Ergänzende Eigenschaften, (available in German and French)

  28. Kunther W, Lothenbach B, Skibsted J (2015) Influence of the Ca/Si ratio of the C-S-H phase on the interaction with sulfate ions and its impact on the ettringite crystallization pressure. Cem Concr Res 69:37–49

    Article  Google Scholar 

  29. Flatt RJ, Scherer GW (2008) Thermodynamics of crystallization stresses in DEF. Cem Concr Res 38:325–336

    Article  Google Scholar 

  30. Schmidt T, Lothenbach B, Romer M, Neuenschwander J, Scrivener KL (2009) Physical and microstructural aspects of sulfate attack on ordinary and limestone blended Portland cements. Cem Concr Res 39:1111–1121

    Article  Google Scholar 

  31. Yu C, Sun W, Scrivener K (2015) Degradation mechanism of slag blended mortars immersed in sodium sulfate solution. Cem Concr Res 72:37–47

    Article  Google Scholar 

  32. Yu C, Sun W, Scrivener K (2013) Mechanism of expansion of mortars immersed in sodium sulfate solutions. Cem Concr Res 43:105–111

    Article  Google Scholar 

  33. Müllauer W, Beddoe RE, Heinz D (2013) Sulfate attack expansion mechanisms. Cem Concr Res 52:208–215

    Article  Google Scholar 

  34. Lothenbach B, Bary B, Le Bescop P, Schmidt T, Leterrier N (2010) Sulfate ingress in Portland cement. Cem Concr Res 40:1211–1225

    Article  Google Scholar 

  35. Gollop RS, Taylor HFW (1992) Microstructural and microanalytical studies of sulfate attack. I. Ordinary Portland cement paste. Cem Concr Res 22:1027–1038

    Article  Google Scholar 

  36. Kunther W, Lothenbach B, Scrivener K (2013) Influence of bicarbonate ions on the deterioration of mortar bars in sulfate solutions. Cem Concr Res 44:77–86

    Article  Google Scholar 

  37. Flatt RJ (2002) Salt damage in porous materials: how high supersaturations are generated. J Cryst Growth 242:435–454

    Article  Google Scholar 

  38. Tsui N, Flatt RJ, Scherer GW (2003) Crystallization damage by sodium sulphate. J Cult Herit 4:109–115

    Article  Google Scholar 

  39. Angeli M, Hébert R, Menéndez B, David C, Bigas JP (2010) Influence of temperature and salt concentration on the salt weathering of a sedimentary stone with sodium sulphate. Eng Geol 115:193–199

    Article  Google Scholar 

  40. Loser R, Leemann A (2011) Sulfatwiderstand von Beton: verbessertes Verfahren basierend auf der Prüfung nach SIA 262/1, Anhang D. ASTRA Report FGU 2010/001, Bern (in German)

  41. Report Nr. 2-1-039-06.14b (2014) VAB-Ringversuch Sulfatwiderstand von Beton nach SIA 262/1, Anhang D (in German)

Download references

Acknowledgments

The Swiss Federal Road Office is acknowledged for financing this study, P. Lura for critically reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Leemann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loser, R., Leemann, A. An accelerated sulfate resistance test for concrete. Mater Struct 49, 3445–3457 (2016). https://doi.org/10.1617/s11527-015-0731-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-015-0731-2

Keywords

Navigation