Skip to main content
Log in

Impact of maltene and asphaltene fraction on mechanical behavior and microstructure of bitumen

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

As a widely accepted concept, bitumen consists of four fractions that can be distinguished by their polarity. Highly polar asphaltene micelles are dispersed in a viscous phase of saturates, aromatics and resins (maltene phase). Different concentrations of asphaltenes in the bitumen result in a range of mechanical response properties. In an interdisciplinary study the impact of the maltene phase and asphaltenes on the linear viscoelastic behavior and the microstructure of bitumen were analyzed by creep recovery testing in a DSR and by atomic force microscopy (AFM). Therefore, bitumen was separated into the maltene and asphaltene fractions and artificial bitumen samples with different, pre-defined asphaltene concentrations were produced and investigated. It was found that the artificially produced, precipitated bitumen samples can be regarded as a representative, bitumen-like material in terms of mechanical behavior and microstructure. Asphaltenes play an important role in the typical viscoelastic behavior of bitumen being mainly responsible for stiffness and elasticity. Also, their concentration appears to be correlated to the occurrence and shape of the bee-like inclusions which can be typically observed by AFM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. OECD (2013) Spending on infrastructure 1995–2011—trends, policies, data. International Transport Forum of the OECD, Paris, p 58

    Google Scholar 

  2. CEN (2012) EN 12597: Bitumen und Bitumenhaltige Bindemittel—Terminologie. CEN, Brussels, p 18

  3. Merino-Garcia D et al (2010) Petrophase 2009 panel discussion on standardization of petroleum fractions. Energy Fuels 24(4):2175–2177

    Article  Google Scholar 

  4. ASTM (2001) ASTM D 4124-01: standard test methods for separation of asphalt into four fractions. ASTM, Philadelphia, p 6

    Google Scholar 

  5. Lesueur D (2009) The colloidal structure of bitumen: consequences on the rheology and on the mechanisms of bitumen modification. Adv Colloid Interface Sci 145(1–2):42–82

    Article  Google Scholar 

  6. Corbett LW (1969) Composition of asphalt based on generic fractionation, using solvent deasphaltening, elution-adsorption chromatography, and densimetric characterization. Anal Chem 41:3

    Article  Google Scholar 

  7. Read J, Whiteoak D (2003) The shell bitumen handbook, 5th edn. Thomas Telford Ltd, London, p 464

    Google Scholar 

  8. Solaimany Nazar AR, Rahimi H (2009) Investiagtion on agglomeration-fragmentation processes in colloidal asphaltene suspensions. Energy Fuels 23(2):8

    Article  Google Scholar 

  9. Sheu EY (1996) Physics of asphaltene micelles and microemulsions—theory and experiment. J Phys 1996(8):17

    Google Scholar 

  10. Fawcett A, McNally T (2003) Polystyrene and asphaltene micelles within blends with a bitumen of an SBS block copolymer and styrene and butadiene homopolymers. Colloid Polym Sci 281(3):203–213

    Article  Google Scholar 

  11. Eyssautier J et al (2012) Organization of asphaltenes in a vacuum residue: a small-angle X-ray scattering (SAXS)–viscosity approach at high temperatures. Energy Fuels 26(5):2696–2704

    Article  Google Scholar 

  12. Pollack SS, Yen TF (1970) Structural studies of asphaltics by X-ray small angle scattering. Anal Chem 42(6):7

    Article  Google Scholar 

  13. Tripadus V et al (2004) The study of diffusive motion in bitumen compounds by quasielastic neutron scattering. Phys B 350(1–3):E455–E458

    Article  Google Scholar 

  14. Yarranton HW et al (2013) On the size distribution of self-associated asphaltenes. Energy Fuels 27(9):24

    Google Scholar 

  15. Haji-Akbari N et al (2013) A unified model for aggregation of asphaltenes. Energy Fuels 27(5):2497–2505

    Article  Google Scholar 

  16. Durand E et al (2010) Effect of chemical composition on asphaltenes aggregation. Energy Fuels 24(2):1051–1062

    Article  Google Scholar 

  17. Mikula RJ, Munoz VA (2000) Characterization of emulsions and suspensions in the petroleum industry using cryo-SEM and CLSM. Colloids Surf A 174:14

    Article  Google Scholar 

  18. Bearsley S, Forbes A, Haverkamp RG (2004) Direct observation of the apshaltene structure in paving-grade bitumen using confocal laser-scanning microscopy. J Microsc 215(2):7

    Article  MathSciNet  Google Scholar 

  19. Forbes A et al (2001) Studies of the microstructure of polymer-modified bitumen emulsion using confocal laser scanning microscopy. J Microsc 204(3):252–257

    Article  MathSciNet  Google Scholar 

  20. Handle F, Füssl J, Neudl S, Großegger D, Eberhardsteiner L, Hofko B, Blab R, Grothe H (2014) The bitumen microstructure: a fluorescent approach. Mater Struct. doi:10.1617/s11527-014-0484-3  

  21. Seifried CM, Crawshaw J, Boek ES (2013) Kinetics of asphaltene aggregation in crude oil studied by confocal laser-scanning microscopy. Energy Fuels 27(4):1865–1872

    Article  Google Scholar 

  22. Soenen H et al (2013) Laboratory investigation of bitumen based on round robin DSC and AFM tests. Mater Struct 47(7):16

    Google Scholar 

  23. Yu X et al (2013) A systematic AFM-based method to measure adhesion differences between micron-sized domains in asphalt binders. Fuel 113:443–447

    Article  Google Scholar 

  24. Champion-Lapalu L et al (2002) Cryo-scanning electron microscopy: a new tool for interpretation of fracture studies in bitumen/polymer blends. Energy Fuels 16(1):143–147

    Article  Google Scholar 

  25. Loeber L et al (1996) New direct observations of asphalts and asphalt binders by scanning electron microscopy and atomic force microscopy. J Microsc 182(1):7

    Article  Google Scholar 

  26. Lyne ÅL et al (2013) Surface wrinkling: the phenomenon causing bees in bitumen. J Mater Sci 48(20):6970–6976

    Article  Google Scholar 

  27. Lu X et al (2005) Wax morphology in bitumen. J Mater Sci 40:8

    Google Scholar 

  28. Redelius P (2011) Asphaltenes in bitumen, what they are and what they are not. Road Mater Pavement Des 10(1):18

    Google Scholar 

  29. Sourty ED et al (2011) The microstructure of petroleum vacuum residue films for bituminous concrete: a microscopy approach. J Microsc 241(2):132–146

    Article  Google Scholar 

  30. Lackner R et al (2004) Multiscale modeling as the basis for reliable predictions of the behavior of multi-composed materials. Prog Eng Comput Technol 8:153–187

    Article  Google Scholar 

  31. Lackner R et al (2005) Is low-temperature creep of asphalt mastic independent of filler shape and mineralogy? Arguments from multiscale analysis. J Mater Civ Eng 17(5):485–491

    Article  Google Scholar 

  32. Aigner E, Lackner R, Pichler C (2009) Multiscale prediction of viscoelastic properties of asphalt concrete. J Mater Civ Eng 21:771–780

    Article  Google Scholar 

  33. Pichler C, Lackner R (2009) Upscaling of viscoelastic properties of highly-filled composites: investigation of matrix-inclusion type morphologies with power-law viscoelastic material response. Compos Sci Technol 69:2410–2420

    Article  Google Scholar 

  34. Pichler C, Lackner R, Aigner E (2012) Generalized self-consistent scheme for upscaling of viscoelastic properties of highly-filled matrix-inclusion composites—application in the context of multiscale modeling of bituminous mixtures. Compos B 43:457–464

    Article  Google Scholar 

  35. Eberhardsteine L, Füssl J, Hofko B, Handle F, Hospodka M, Blab R, Grothe H (2014) Influence of asphaltene content on mechanical bitumen behavior: experimental investigation and micromechanical modeling. Mater Struct 1–14. doi:10.1617/s11527-014-0383-7

  36. Eberhardsteiner L, Füssl J, Hofko B, Handle F, Hospodka M, Blab R, Grothe H (2015) Towards a microstructural model of bitumen aging behavior. Int J Pavement Eng. doi:10.1080/10298436.2014.993192

  37. CEN (2007) EN 1426: bitumen and bituminous binders—determination of needle penetration. CEN, Brussels

    Google Scholar 

  38. CEN (2007) EN 1427: bitumen and bituminous binders—determination of the softening point—ring and ball method. CEN, Brussels

    Google Scholar 

  39. CEN (2005) EN 14770: bitumen and bituminous binders—determination of complex shear modulus and phase angle—dynamic shear rheometer (DSR). CEN, Brussels

    Google Scholar 

  40. CEN (2005) EN 14771: bitumen and bituminous binders—determination of the flexural creep stiffness—bending beam rheometer (BBR). CEN, Brussels

    Google Scholar 

  41. Eaton PW (2010) Atomic force microscopy. Oxford University Press, Oxford

    Book  Google Scholar 

  42. Garcıá R, Pérez R (2002) Dynamic atomic force microscopy methods. Surf Sci Rep 47(6–8):197–301

    Article  Google Scholar 

  43. Nečas D, Klapetek P (2011) Gwyddion: an open-source software for SPM data analysis. Cent Eur J Phys 10(1):181–188

    Google Scholar 

  44. Masson JF, Leblond V, Margeson J (2006) Bitumen morphologies by phase-detection atomic force microscopy. J Microsc 221(1):17–29

    Article  MathSciNet  Google Scholar 

  45. Nahar S et al (2013) First observation of blending-zone morphology at interface of reclaimed asphalt binder and virgin bitumen. Transp Res Rec 2370(1):1–9

    Article  MathSciNet  Google Scholar 

  46. Nahar SN et al. (2014) Turning back time: rheological and microstructural assessment of rejuvenated bitumen. TRB 93rd annual meeting compendium of papers, 1–17

  47. Nahar SN et al (2013) Temperature and thermal history dependence of the microstructure in bituminous materials. Eur Polym J 49(8):1964–1974

    Article  Google Scholar 

  48. Schmets A et al (2010) On the existence of wax-induced phase separation in bitumen. Int J Pavement Eng 11(6):555–563

    Article  Google Scholar 

  49. Pauli AT et al (2001) Atomic force microscopy investigation of SHRP asphalts. Abstr Pap Am Chem Soc 221:U220

    Google Scholar 

  50. Stangl K, Jäger A, Lackner R (2006) Microstructure-based identification of bitumen performance. Road Mater Pavement Des 7(sup1):111–142

    Article  Google Scholar 

  51. Merino-Garcia D et al (2010) Petrophase 2009 panel discussion on standardization of petroleum fractions. Energy Fuels 24(4):2175–2177

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Austrian Research Promotion Agency (FFG) for funding part of the presented research within the research project “Oekophalt”, as well as to Mr. Thomas Riedmayer for running the mechanical bitumen tests for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Hofko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofko, B., Eberhardsteiner, L., Füssl, J. et al. Impact of maltene and asphaltene fraction on mechanical behavior and microstructure of bitumen. Mater Struct 49, 829–841 (2016). https://doi.org/10.1617/s11527-015-0541-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-015-0541-6

Keywords

Navigation