Skip to main content
Log in

Fiber orientation during casting of UHPFRC: electrical resistivity measurements, image analysis and numerical simulations

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Fibers are added to cementitious materials to enhance their mechanical behavior in hardened state. This reinforcement is strongly influenced by the fiber preferred orientation induced by casting flow. In this paper, a model derived from the evolution of a single rigid fiber orientation in a Newtonian medium is proposed to numerically predict fiber orientation in a cementitious structure in hardened state. The main characteristics of fiber orientation during a pouring representative of industrial castings are detailed. Experimental measurements taken on the same reference casting confirm this hardened state orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rossi P (1992) Mechanical behavior of metal fiber reinforced concretes. Cem Concr Compos 14(1):3–16

    Article  Google Scholar 

  2. Rossi P (1994) Steel fiber reinforced concrete (sfrc): an example of french research. ACI Mater J 91(3):273–279

    Google Scholar 

  3. Rossi P, Acker P, Malier Y (1987) Effect of steel fibers at two different stages: the material and the structure. Mater Struct 20(120):436–439

    Article  Google Scholar 

  4. Li VC, Leung CKY (1992) Tensile failure modes of random discontinuous fiber reinforced brittle matrix composites. J Eng Mech ASCE 118(11):2246–2264

    Article  Google Scholar 

  5. Li VC, Wu HC (1992) Micromechanics based design for pseudo strain-hardening in cementitious composites. In: Lutes LD, Niedzwecki JM (eds) 9th ASCE engineering mechanics conference, Reston, pp 740–743

  6. Rossi P (2000) Ultra-high performance fibre reinforced concretes (uhpfrc): an overview. In: Rossi P, Chanvillard G (eds) Fifth RILEM symposium on fiber-reinforced concrete (FRC)—RILEM proceedings, vol 15, pp 87–100

  7. Naaman AE (1992) Tailored properties for structural performance. In: Reinhardt HW, Naaman AE (eds) High performance fiber reinforced cement composites—RILEM proceedings, vol 15, E and FN Spon, London, pp 18–38

  8. Rossi P, Acker P, Malier Y (1987) Effect of steel fibers at two different stages: the material and the structure. Mater Struct 20(120):436–439

    Article  Google Scholar 

  9. Rossi P, Arca A, Parant E, Fakhri P (2005) Bending and compressive behaviors of a new cement composite. Cem Concr Res 35(1):27–33

    Article  Google Scholar 

  10. Maalej M, Hashida T, Li VC (1995) Effect of fiber volume fraction on the offcrack-plane fracture energy in strain-hardening engineered cementitious composites. J Am Ceram Soc 78(12):3369–3375

    Article  Google Scholar 

  11. Li VC, Wu HC, Chan YW (1995) Interfacial property tailoring for pseudo trainhardening cementitious composites. In: Carpinteri, Sih (eds) Advanced technology on design and fabrication of composite, materials and structures. Kluwer, Dordrecht, pp 261–268

  12. Leung CKY (1996) Design criteria for pseudoductile fiber-reinforced composites. J Eng Mech ASCE 122(1):10–18

    Article  Google Scholar 

  13. Leung CKY, Shapiro N (1999) Optimal steel fiber strength for reinforcement of cementitious materials. J Mater Civ Eng 11(2):116–123

    Article  Google Scholar 

  14. Ouyang C, Pacios A, Shah SP (1994) Pull out of inclined fibers from cementitious matrix. J Eng Mech 120(12):2641–2659

    Article  Google Scholar 

  15. Imam MA (1995) Shear-moment interaction of steel fibre high strength concrete. PhD Thesis, Catholic University of Leuven, Belgium

  16. Campione G, Mindess S (1999) Fibres as shear reinforcement for high strength reinforced concrete beams containing stirrups. In: Proceedings of the IIIrd international workshop on high performance fiber reinforced cementitious composites (HPFRCC3), Mainz, pp 519–530

  17. Rossi P (2000) Ultra-high performance fibre reinforced concretes (uhpfrc): an overview. In: Rossi P, Chanvillard G (eds) Fifth RILEM symposium on fiber-reinforced concrete (FRC)—RILEM proceedings, vol 15, pp 87–100

  18. Rossi P (2005) Development of new cement composite materials for construction. In: Proceedings of the institution of mechanical engineer part L—Journal of Materials-Design and Applications, vol 219 of L1, pp 67–74

  19. Martinie L, Rossi P, Roussel N (2010) Rheology of fiber reinforced cementitious materials: classification and prediction. Cem Concr Res 40:226–234

    Article  Google Scholar 

  20. Laranjeira F, Aguado A, Molins C (2010) Predicting the pullout response of inclined steel fibers, straight fibers. Mater Struct 43:875–895

    Google Scholar 

  21. Markovi I (2006) High-performance hybrid-fiber concrete: development and utilization. PhD Thesis, Delft University of Technology, Pays-Bas

  22. Chanvillard G (1993) Analyse expérimentale et modélisation micromécanique du comportement des fibres d’acier tréfilées, ancrées dans une matrice cimentaire. PhD Thesis, LCPC, France

  23. Morton J, Groves GW (1974) The cracking of composites consisting of discontinuous ductile fibers in a brittle matrix: effect of orientation. J Mater Sci 9:1436–1445

    Article  Google Scholar 

  24. Swamy RN (1975) Fibre reinforcement of cement and concrete. Mater Struct 8(45):235–254

    Google Scholar 

  25. Martinie L, Roussel N (2011) Simple tools for fiber orientation prediction in industrial practice. Cem Concr Res 41:993–1000

    Article  Google Scholar 

  26. Kooiman AG (2000) Modelling steel fiber reinforced concrete for structural design. PhD Thesis, Delft University of Technology, the Netherlands

  27. Boulekbache B, Hamrat M, Chemrouk M, Amziane S (2009). Influence de la rhéologie des bétons renforcés de fibres métalliques sur leurs propriétés mécaniques. Eur J Environ Civil Eng 13(4):473–488

    Google Scholar 

  28. Ozyurt N, Mason TO, Shah SP (2006) Non-destructive monitoring of fiber orientation using AC-IS: an industrial-scale application. Cem Concr Res 36:1653–1660

    Article  Google Scholar 

  29. Lataste JF, Belhoul M, Breysse D (2008) Characterisation of fibers distribution in a steel fiber reinforced concrete with electrical resistivity measurements. NDT&E Int 41:638–647

    Article  Google Scholar 

  30. Barnett SJ, Lataste JF, Parry T, Millard SG, Soutsos MN (2009) Assessment of fiber orientation in ultra-high performance fiber reinforced concrete and its effect on flexural strength. Mater Struct 43(7):1009–1023

    Article  Google Scholar 

  31. Folgar F, Tucker CF (1984) Orientation behavior of fibers in concentrated suspensions. J Reinf Plast Compos 3:98–119

    Article  Google Scholar 

  32. Rahnama M, Koch DL, Shaqfeh ESG (1995) The effect of hydrodynamic interactions on the orientation distribution in a fiber suspension subject to simple shear flow. Phys Fluids 7(3):487–506

    Article  MATH  Google Scholar 

  33. Petrich MP, Koch DL, Cohen C (2000) An experimental determination of the stressmicrostructure relationship in semi-concentrated fiber suspensions. J Non-Newton Fluid Mech 95:101–133

    Article  Google Scholar 

  34. Dinh SM, Armstrong RC (1984) A rheological equation of state for semi-concentrated fiber suspensions. J Rheol 28(3):207–227

    Article  MATH  Google Scholar 

  35. Koch DL, Shaqfeh ESG (1990) The average rotation rate of a fiber in a linear flow of a semi-dilute suspension. Phys Fluids A 2:2093–2102

    Article  MATH  MathSciNet  Google Scholar 

  36. Roussel N (2006) Correlation between yield stress and slump: comparison between numerical simulations and concrete rheometer results. Mater Struct 39(4):501–509

    Article  Google Scholar 

  37. Roussel N, Stefani C, Le Roy R (2005) From mini cone test to Abrams cone test: measurement of cement based materials yield stress using slump tests. Cem Concr Res 35(5):817–822

    Article  Google Scholar 

  38. Roussel N, Coussot P (2005) Fifty-cent rheometer for yield stress measurements: from slump to spreading flow. J Rheol 49(3):705–718

    Article  Google Scholar 

  39. Edwards LS (1977) A modified pseudosection for resistivity and IP. Geophysics 42(5):1020–1036

    Article  Google Scholar 

  40. Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics. Cambridge University Press, Cambridge, p 770, ISBN 0-521-32693-1

  41. Lataste JF, Sirieix C, Breysse D, Frappa M (2003) Improvement of electrical resistivity measurement for non destructive evaluation of concrete structures. In: Naus DJ (ed) 2nd International RILEM workshop on life prediction and aging management of concrete structures, pp 93–102

  42. Dupont D, Vandewalle L (2005) Distribution of steel fibers in rectangular sections. Cem Concr Compos 27:391–398

    Article  Google Scholar 

  43. Robins PJ, Austin SA, Jones PA (2003) Spatial distribution of steel fibers in sprayed and cast concrete. Mag Concr Res 55(3):225–235

    Article  Google Scholar 

  44. Ferrara L, Meda A (2006) Relationship between fiber distribution, workability and the mechanical properties of sfrc applied to precast roof elements. Mater Struct 39:411–420

    Article  Google Scholar 

  45. Vincent M (1984) Etude de l’orientation des fibres de verre courtes lors de la mise en uvre de thermoplastiques chargées. PhD Thesis, Ecole Nationale Suprieure des Mines de Paris, Paris

  46. Jeffery GB (1922) The motion of ellipsoidal particles immersed in a viscous fluid. In: Proceedings of the Royal Society of London; philosophical transactions of the royal society, Royal Society of London, pp 161–179

  47. Sepehr M, Ausias G, Carreau PJ (2004) Rheological properties of short fiber filled polypropylene in transient shear flow. J Non-Newton Fluid Mech 123:19–32

    Article  MATH  Google Scholar 

  48. Chiba K, Nakamura K (1998) Numerical solution of fiber suspension flow through a complex channel. J Non-Newton Fluid Mech 78:167–185

    Article  MATH  Google Scholar 

  49. Poitou A, Chinesta F, Torres R (2000) Numerical simulation of the steady recirculating flows of fiber suspensions. J Non-Newton Fluid Mech 90:65–80

    Article  MATH  Google Scholar 

  50. Reddy BD, Mitchell GP (2001) Finite element analysis of fiber suspension flows. Comput Methods Appl Mech Eng 190:2349–2367

    Article  MATH  Google Scholar 

  51. Han KH, Im YT (2002) Numerical simulation of three-dimensional fiber orientation in short-fiber-reinforced injection-molded parts. J Mater Process Technol 124:366–371

    Article  Google Scholar 

  52. Chung DH, Kwon TH (2002) Numerical studies of fiber suspensions in axisymmetric radial diverging flow: the effects of modeling and numerical assumptions. J Non-Newton Fluid Mech 107:67–96

    Article  MATH  Google Scholar 

  53. Ramazani A, Ait-Kadi A, Grmela M (1997) Rheological modelling of short fiber thermoplastic composites. J Non-Newton Fluid Mech 73:241–260

    Article  Google Scholar 

  54. Ranganathan S, Advani SG (1993) A simultaneous solution for flow and fiber orientation in axisymmetric diverging radial flow. J Non-Newton Fluid Mech 47:107–136

    Article  MATH  Google Scholar 

  55. Martinie L (2010) Comportement rhologique et mise en uvre des matriaux cimentaires renforcs en fibres. PhD Thesis, Laboratoire Central des Ponts et Chaussées, Paris, France

  56. Aveston J, Kelly A (1973) Theory of multiple fracture of fibrous composites. J Mater Sci 8:352–362

    Article  Google Scholar 

  57. Stroeven P (1978) Morphometry of fiber reinforced cementitious materials—part I—efficiency and spacing in idealized structures. Mater Struct 11(61):31–38

    Google Scholar 

  58. Ausias G, Fan XJ, Tanner RI (2006) Direct simulation for concentrated fiber suspensions in transient and steady state shear flows. J Non-Newton Fluid Mech 135:46–57

    Article  MATH  Google Scholar 

  59. Advani SG, Tucker CL (1987) The use of tensors to describe and predict fiber orientation in short fiber composites. J Rheol 31(8):751–784

    Article  Google Scholar 

  60. Latz A, Strautins U, Niedziela D (2010) Comparative numerical study of two concentrated fiber suspension models. J Non-Newton Fluid Mech 165:764–781

    Article  MATH  Google Scholar 

  61. Ferec J, Heniche M, Heuzey MC, Ausias G, Carreau PJ (2008) Numerical solution of the fokker-planck equation for fiber suspensions: application to the Folgar–Lipscomb model. J Non-Newton Fluid Mech 155:20–29

    Article  MATH  Google Scholar 

  62. Edwards SF, Doi M (1986) The theory of polymer dynamics, vol 26. Oxford Science Publications, New York

  63. Phan-Thien N, Fan X-J, Tanner RI, Zheng R (2002) Flogar-tucker constant for a fiber suspension in a Newtonian fluid. J Non-Newton Fluid Mech 103:251–260

    Article  MATH  Google Scholar 

  64. Lipscomb GG, Denn MM (1988) The flow of fiber suspensions in complex geometries. J Non-Newton Fluid Mech 26:297–325

    Article  Google Scholar 

  65. Sunadararjakumar RR, Koch DL (1997) Structure and properties of sheared fiber suspensions with mechanical contacts. J Non-Newton Fluid Mech 73:205–239

    Article  Google Scholar 

  66. Chiba K, Yasuda K, Nakamura K (2001) Numerical solution of fiber suspension flow through a parallel plate channel by coupling flow field with fiber orientation distribution. J Non-Newton Fluid Mech 99:145–157

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laetitia Martinie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinie, L., Lataste, JF. & Roussel, N. Fiber orientation during casting of UHPFRC: electrical resistivity measurements, image analysis and numerical simulations. Mater Struct 48, 947–957 (2015). https://doi.org/10.1617/s11527-013-0205-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-013-0205-3

Keywords

Navigation