Skip to main content
Log in

A model combining structure and properties of a 160/220 bituminous binder modified with polymer/clay nanocomposites. A rheological and morphological study

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The present contribution focuses on the modification of a 160/220 bituminous binder with clay and polymer/clay nanocomposites. Bitumen/polymer/clay ternary blends were prepared using styrene–butadiene–styrene, ethylene vinyl acetate and ethylene methylacrylate copolymers mixed with an organomodified montmorillonite. Dynamic mechanical analyses were performed in the extended domain of stress, temperature and frequency to analyse the thermorheological behaviour of the blends. The time–temperature superposition principle was applied to shift the experimental data recorded at different temperatures and generate master curves of the linear viscoelastic functions. For all blends, the mechanical response of the system was found to be strongly and intimately influenced by the nanocomposite modification. In some cases, a solid-like behaviour appears and delays the Newtonian transition. Morphological analyses performed with fluorescence microscopy allowed to associate the binder properties with the presence of clay silicates, which alter the colloidal equilibrium of the bitumen and enhances the compatibility between bitumen and polymers. Based on the morphological and rheological results, a structural model of the prepared blends is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

EMA:

Ethylene methylacrylate

EVA:

Ethylene vinyl acetate

MMT:

Montmorillonite

PMB:

Polymer modified bitumen

PNC:

Polymer nanocomposites

SBS:

Styrene–butadiene–styrene

SHRP:

Strategic Highway Research Program

TTSP:

Time–Temperature Superposition Principle

References

  1. Airey GD (2011) Factors affecting the rheology of polymer modified bitumen. In: McNally T (ed) Polymer modified bitumen—properties and characterization. Woodhead, Oxford, pp 238–263

    Chapter  Google Scholar 

  2. Anderson DA, Bahia HU, Christensen DW (1994) Binder characterization and evaluation—Volume 3: physical properties. SHRP-A-369 Strategic Highways Research Program, National Research Council, Washington

  3. Barnes HA, Hutton JF, Walters FRS (1989) An introduction to rheology. Elsevier, Amsterdam

    MATH  Google Scholar 

  4. Chambrion P, Bertau R, Ehrburger P (1996) Characterization of bitumen by differential scanning calorimetry. Fuel 75:144–148

    Article  Google Scholar 

  5. Chiu FC, Fu SW, Chuang WT, Sheu HS (2008) Fabrication and characterization of polyamide 6,6/organo-montmorillonite nanocomposites with and without a maleated polyolefin elastomer as a toughener. Polymer 49:1015–1026

    Article  Google Scholar 

  6. Elseifi MA, Flintsch GW, Al-Qadi IL (2003) Quantitative effect of elastomeric modification on binder performance at intermediate and high temperatures. J Mater Civ Eng 15:32–40

    Article  Google Scholar 

  7. Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

  8. Giuliani F, Merusi F (2009) Flow characteristics and viscosity functions in bitumen binders modified by wax. Int J Pavement Res Technol 2:51–60

    Google Scholar 

  9. Giuliani F, Merusi F, Filippi S, Biondi D, Finocchiaro ML, Polacco G (2009) Effects of polymer modification on the fuel resistance of asphalt binders. Fuel 88:1539–1546

    Article  Google Scholar 

  10. Hong JS, Kim YK, Ahn KH, Lee SJ, Kim C (2007) Interfacial tension reduction in PBT/PE/clay nanocomposite. Rheol Acta 46:469–478

    Article  Google Scholar 

  11. Khatua BB, Lee DJ, Kim HY, Kim JK (2004) Effect of organoclay platelets on morphology of nylon-6 and poly(ethylene-ran-propylene) rubber blends. Macromolecules 37:2454–2459

    Article  Google Scholar 

  12. Kusmono ZA, Mohd Ishak WS, Chow T, Takeichi R (2008) Influence of SEBS-g-MA on morphology, mechanical, and thermal properties of PA6/PP/organoclay nanocomposites. Eur Polymer J 44:1023–1039

    Article  Google Scholar 

  13. LeBaron PC, Wang Z, Pinnavaia TJ (1999) Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci 15:11–29

    Article  Google Scholar 

  14. Lesueur D (2009) The colloidal structure of bitumen: consequences on the rheology and on the mechanisms of bitumen modification. Adv Colloid Interface Sci 145:42–82

    Article  Google Scholar 

  15. Liu G, Wu S, van de Ven M, Molenaar A, Besamusca J (2010) Characterization of organic surfactant on montmorillonite nanoclay to be used in bitumen. J Mater Civ Eng (ASCE) 22:794–799

    Article  Google Scholar 

  16. Liu G, Wu S, van de Ven M, Yu J, Molenaar A (2010) Influence of sodium and organo-montmorillonites on the properties of bitumen. Appl Clay Sci 49:69–73

    Article  Google Scholar 

  17. Merusi F, Giuliani F (2011) Intrinsic resistance to non-reversible deformation in modified asphalt binders and its relation with specification criteria. Constr Build Mater 25:3356–3366

    Article  Google Scholar 

  18. Merusi F (2012) Delayed mechanical response in modified asphalt binders. Characteristics, modeling and engineering implications. Road Mater Pavement Des 13(Suppl. 1 AAPT 2012):321–345

    Article  Google Scholar 

  19. Ouyang C, Wang S, Zhang Y, Zhang Y (2005) Preparation and properties of styrene–butadiene–styrene copolymer/kaolinite clay compound and asphalt modified with the compound. Polym Degrad Stab 87:309–317

    Article  Google Scholar 

  20. Ouyang C, Wang S, Zhang Y, Zhang Y (2006) Thermo-rheological properties and storage stability of SEBS/kaolinite clay compound modified asphalts. Eur Polymer J 42:446–457

    Article  Google Scholar 

  21. Pavlidou S, Papaspyrides CD (2008) A review on polymer-layered silicates nanocomposites. Prog Polym Sci 33:1119–1198

    Article  Google Scholar 

  22. Pfeiffer JP, Saal RNJ (1940) Asphaltic bitumen as colloid systems. J Phys Chem 44:139–149

    Article  Google Scholar 

  23. Pfeiffer JP, Van Doormaal PM (1936) The rheological properties of asphaltic bitumens. J Inst Petrol 22:414–440

    Google Scholar 

  24. Polacco G, Biondi D, Stastna J, Vlachovicova Z, Zanzotto L (2004) Effect of SBS on rheological properties of different base asphalts. Macromol Symp 218:333–342

    Google Scholar 

  25. Polacco G, Filippi S, Paci M, Giuliani F, Merusi F (2012) Structural and rheological characterization of wax modified bitumens. Fuel 95:407–416

    Article  Google Scholar 

  26. Polacco G, Kríz P, Filippi S, Stastna J, Biondi D, Zanzotto L (2008) Rheological properties of asphalt/SBS/clay blends. Eur Polymer J 44:3512–3521

    Article  Google Scholar 

  27. Polacco G, Stastna J, Biondi D, Zanzotto L (2006) Relation between polymer architecture and non-linear viscoelastic behavior of modified asphalts. Curr Opin Colloid Interface Sci 11:230–245

    Article  Google Scholar 

  28. Polacco G, Vacin OJ, Biondi D, Stastna J, Zanzotto L (2003) Dynamic master curves of polymer modified asphalt from different geometries. Appl Rheol 13:118–124

    Google Scholar 

  29. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Article  Google Scholar 

  30. Ray SS, Pouliot S, Bousmina M, Utracki LA (2004) Role of organically modified layered silicate as an active interfacial modifier in immiscible polystyrene/polypropylene blends. Polymer 45:8403–8413

    Article  Google Scholar 

  31. Sureshkumar MS, Filippi S, Polacco G, Kazatchkov I, Stastna J, Zanzotto L (2010) Internal structure and linear viscoelastic properties of EVA/asphalt nanocomposites. Eur Polymer J 46:621–633

    Article  Google Scholar 

  32. Sureshkumar MS, Stastna J, Polacco G, Filippi S, Kazatchkov I (2010) Rheology of bitumen modified by EVA-organoclay nanocomposites. J Appl Polym Sci 118:557–565

    Article  Google Scholar 

  33. Teng BKG (2012) Polymer-clay nanocomposites. In: Teng BKG (ed) Developments in clay science. Elsevier, Amsterdam, pp 201–241

    Chapter  Google Scholar 

  34. Usuki A, Kawasumi M, Kojima Y, Okada A, Kurauchi T, Kamigaito OJ (1993) Swelling behavior of montmorillonite cation exchanged for v-amino acids by e-caprolactam. Mater Res 8(5):1174–1178

    Article  Google Scholar 

  35. Van Der Poel C (1954) A general system describing the visco-elastic properties of bitumens and its relation to routine test data. J Appl Chem 4:221–236

    Article  Google Scholar 

  36. Yu J, Zeng X, Wu S, Wang L, Liu G (2007) Preparation and properties of montmorillonite modified asphalts. Mater Sci Eng, A 447:233–238

    Article  Google Scholar 

  37. Yu JY, Feng PC, Zhang HL, Wu SP (2009) Effect of organo-montmorillonite on aging properties of asphalt. Constr Build Mater 23:2636–2640

    Article  Google Scholar 

  38. Zhang B, Xi M, Zhang D, Zhang H, Zhang B (2009) The effect of styrene–butadiene–rubber/montmorillonite modification on the characteristics and properties of asphalt. Constr Build Mater 23:3112–3117

    Article  Google Scholar 

Download references

Acknowledgments

The Authors would like to thank Dr. Ilaria Basuino for her contribution in performing the lab work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Polacco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merusi, F., Giuliani, F., Filippi, S. et al. A model combining structure and properties of a 160/220 bituminous binder modified with polymer/clay nanocomposites. A rheological and morphological study. Mater Struct 47, 819–838 (2014). https://doi.org/10.1617/s11527-013-0096-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-013-0096-3

Keywords

Navigation