Skip to main content

Advertisement

Log in

Electromagnetic non-destructive evaluation techniques for the monitoring of water and chloride ingress into concrete: a comparative study

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

One of the principal causes of deterioration in reinforced concrete structures is steel corrosion caused by the penetration of aggressive agents into the protective cover concrete layer (particularly water containing chlorides). Electromagnetic non-destructive evaluation (EM NDE) techniques are sensitive to these aggressive agents and can be used to assess concrete durability in terms of corrosion risk. The electromagnetic (EM) properties that are the focus of the study presented here are electrical resistivity and dielectric permittivity—inherent material properties that are both sensitive to degree of saturation and the salinity of the pore solution. Three EM NDE techniques suitable for the in situ investigation of concrete are used to obtain these EM properties: electrical resistivity tomography, capacimetry and ground penetrating radar. Experimental work is conducted on in a controlled laboratory environment with the aim of comparing the ability of the three EM NDE techniques to monitor the ingress of saline solutions into concrete slabs and discern between their chloride content. All three methods are found to be capable of detecting variation in water and chloride content and therefore show promise for the in situ monitoring of water and chloride ingress. However, more research is needed on the quantification of the EM properties over depth as well as on the combination of these methods in order to separate the influence of these two parameters on the EM responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Adous M, Quéffélec P, Laguerre L (2006) Coaxial-cylindrical transition line for broadband permittivity measurement of civil engineering materials. Meas Sci Technol 17:2241–2246

    Article  Google Scholar 

  2. AFPC-AFREM (1997) Durabilité des Bétons: Méthodes recommandées pour la mesure des grandeurs associées à la durabilité. Laboratoire Matériaux et Durabilité des Constructions, INSA Génie Civil, Toulouse, France

  3. Al Shamaa M (2009) Caractérisation hydrique de bétons d’ouvrages par méthode capacitive. Masters dissertation, Université de Nantes-Saint-Nazaire

  4. Andrade C, Polder R, Basheer M (2007) Non-destructive methods to measure ion migration. In: RILEM Report 040. Non-destructive evaluation of the penetrability and thickness of concrete cover, RILEM TC 189-NEC: State of the art report, pp 91–112

  5. Arliguie G, Hornain H (2007) GranDuBé—Grandeurs associées à la Durabilité des Bétons AFGC-RGCU. Presses de l’ENPC, Paris

    Google Scholar 

  6. Balanis CA (1989) Advanced engineering electromagnetics. Wiley, New York

    Google Scholar 

  7. Baroghel-Bouny V et al. (2007) Concrete for a given structure service life. Association Française de Génie Civil (AFGC), Paris

  8. Baroghel-Bouny V, Belin P, Maultzsch M, Henry D (2007) AgNO3 spray tests—advantages, weaknesses, and various applications to quantify chloride ingress into concrete. Part 1: non-steady-state diffusion tests in laboratory and exposure to natural conditions. Mater Struct 40:759–781

    Article  Google Scholar 

  9. Breysse D (ed) et al. (2012) Non-destructive assessment of concrete structures: reliability and limits of single and combined techniques (State-of-the-Art Report of the RILEM Technical Committee 207-INR)

  10. Bungey JH, Millard SG, Austin BA, Thomas, C and Shaw MR (1996) Permittivity and conductivity of concrete structures at radar frequencies. In: Dhir RK, Jones MR (eds) Concrete in the service of mankind: concrete repair, rehabilitation and protection. E & FN Spon, London

  11. Büyükoztürk O, Yu T-Y, Ortega J (2006) A methodology for determining complex permittivity of construction materials based on transmission-only coherent, wide-bandwidth free-space measurements. Cem Concr Compos 28:349–359

    Article  Google Scholar 

  12. Chouteau M, Vallières S, Toe E (2003) A multi-dipole mobile array for the non-destructive evaluation of pavement and concrete infrastructures: a feasability study, In: Proceedings of international symposium non-destructive testing in civil engineering (NDT-CE 2003), Berlin, Germany, September 16–19

  13. Cox R, Cigna R, Vennesland O, Valente T (1997) Corrosion and protection of metals in contact with concrete, Final report. European Commission, Directorate General Science, Research and Development, Brussels

  14. Daily W, Ramirez A, Binley A, Henry-Poulter S (1994) Electrical resistance tomography of concrete structures. In: ECAPT94: 3rd European concerted action meeting on process tomography, Lisbon (Portugal)

  15. Daniels D (2004) Ground-penetrating radar. Institute of Electrical Engineers, London

    Book  Google Scholar 

  16. Davis JL, Annan AP (1989) Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy. Geophys Prospect 37:531–551

    Article  Google Scholar 

  17. Dérobert X, Iaquinta J, Klysz G, Balayssac J (2008) Use of capacitive and GPR techniques for non-destructive evaluation of cover concrete. NDT&E Int 41:44–52

    Article  Google Scholar 

  18. Dérobert X, Villain G, Cortas R, Chazelas J-L (2009) EM characterization of hydraulic concretes in the GPR frequency band using a quadratic experimental design. In: Proceedings of NDTCE’09, non-destructive testing in civil engineering, Nantes, France

  19. Du Plooy (2013) The development and combination of electromagnetic non-destructive evaluation techniques for the assessment of cover concrete condition prior to corrosion. PhD dissertation, L’Université de Nantes, France

  20. Du Plooy R, Palma Lopes S, Villain G, Dérobert X (2013a) The combination of electromagnetic non-destructive evaluation techniques for the determination of effective diffusion coefficient. In: Proceedings of first international conference on concrete sustainability, Tokyo, Japan

  21. Du Plooy R, Palma Lopes S, Villain G, Dérobert X (2013b) Development of a multi-ring resistivity cell and multi-electrode resistivity probe for investigation of cover concrete condition. NDT&E Int 54:27–36

    Google Scholar 

  22. Duracrete (1999) General guidelines for durability design and redesign. Project No. BE 95-1347, Probabilistic performance based durability design of concrete structures. The European Union-Brite-EuRam III

  23. Fen-Chong T, Fabbri A, Guilbaud J-P, Coussy O (2004) Determination of liquid water content and dielectric constant in porous media by the capacitive method. C. R. Mecanique 332:639–645

    Article  MATH  Google Scholar 

  24. Flint RC, Jackson PD, McCann DM (1999) Geophysical imaging inside masonry structures. NDT&E Int 32(8):469–480

    Article  Google Scholar 

  25. Frankel G (2003) ASM handbook. In: Corrosion: fundamentals, testing, and protection, vol 13A. ASM International, Materials Park

  26. Gjørv Ø, Vennesland Ø and El-Busaudy A (1977) Electrical resistivity of concrete in the oceans. In: Proceedings of 9th annual offshore technology conference, Houston, Texas, pp 581–588

  27. Gowers KR, Millard SG (1999) Measurement of concrete resistivity for assessment of corrosion severity of steel using Wenner technique. ACI Mater J 96:536–542

    Google Scholar 

  28. Han N (2004) Role of NDE in quality control during construction of concrete infrastructures on the basis of service life design. Constr Build Mater 18:163–172

    Article  Google Scholar 

  29. Hanai T (1960) Theory of the dielectric dispersion due to the interfacial polarization and its application to emulsions. Colloid Poly Sci 171:23–31

    Google Scholar 

  30. Henry RL (1964) Water vapour transmission and electrical resistivity of concrete, Final Report, US Naval Civil Engineering Laboratory, Port Hueneme, California, USA

  31. Hugenschmidt J, Loser R (2008) Detection of chlorides and moisture in concrete structures with GPR. Mater Struct 41:785–792

    Article  Google Scholar 

  32. Hunkeler F (1996) The resistivity of pore water solution—a decisive parameter of rebar corrosion and repair methods. Constr Build Mater 10:381–389

    Article  Google Scholar 

  33. Ihamouten A (2011) Caractérisation physique et hydrique de bétons d’ouvrage par propagation d’ondes électromagnetique. PhD dissertation, Université de Nantes, Ecole Doctorale Science et Technologies de I’information et Mathématiques

  34. Ihamouten A, Chahine K, Baltazart V, Villain G, Dérobert X (2011) On the variants of frequency power law for the electromagnetic characterization of hydraulic concrete. IEEE Trans Instrum Meas 60:3658–3668

    Article  Google Scholar 

  35. Ihamouten A, Villain G, Dérobert X (2012) Complex permittivity frequency variations from multi-offset GPR data: hydraulic concrete characterization. IEEE Trans Instrum Meas 61:1636–1648

    Article  Google Scholar 

  36. Kalogeropoulos A, Van der Kruk J, Hugenschmidt J, Busch S, Merz K (2011) Chlorides and moisture assessment in concrete by GPR full waveform inversion. Near Surf Geophys 9:277–285

    Google Scholar 

  37. Karhunen K, Seppänen A, Lehikoinen A, Monteiro PJ, Kaipio JP (2010) Electrical resistance tomography imaging of concrete. Cem Concr Res 40:137–145

    Article  Google Scholar 

  38. Keller GV, Frischknecht FC (1966) Electrical methods in geophysical prospecting. Pergamon Press, Oxford

  39. Kessler RJ, Powers RG, Vivas E, Paredes MA, Virmani JP (2008) Surface resistivity as an indicator of concrete chloride penetration resistance. Technical report, Florida Department of Transportation

  40. Khelidj A, Bastian G, Baroghel-Bouny V, Villain G (2007) Experimental study of the evolution of heat and moisture transfer parameters of a concrete slab. Mag Concr Res 59:377–386

    Article  Google Scholar 

  41. Klysz G, Balayssac J-P (2007) Determination of volumetric water content of concrete using ground-penetrating radar. Cem Concr Res 37:1164–1171

    Article  Google Scholar 

  42. Kraus JD, Carver KR (1973) Electromagnetics. McGraw-Hill, New York

    Google Scholar 

  43. Kropp J, Alexander M (2007) Non-destructive methods to measure ion migration. In: RILEM Report 040. Non-destructive evaluation of the penetrability and thickness of concrete cover, RILEM TC 189-NEC: state of the art report, pp 13–34

  44. Lataste JF, Sirieix C, Breysse D, Frappa M (2003) Improvement of electrical resistivity measurement for non destructive evaluation of concrete structures. In: PRO 29 2nd international RILEM workshop on life prediction and aging management of concrete structures, Paris, France

  45. Laurens S, Balayssac J, Rhazi J, Arliguie G (2002) Influence of concrete relative humidity on the amplitude of ground-penetrating radar (GPR) signal. Mater Struct 35:198–203

    Article  Google Scholar 

  46. Leckie HP, Uhlig HH (1966) Environmental factors affecting the critical potential for pitting in 18-8 stainless steel. J Electrochem Soc 113:1262–1267

    Article  Google Scholar 

  47. Liu Y, Suarez A, Presuel-Moreno F (2010) Characterization of new and old concrete structures using surface resistivity measurements. Final report, contact number BD546, RPWO #08, Florida Department of Transportation Research Center

  48. Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys Prospect 44:131–152

    Article  Google Scholar 

  49. Malhorta VM, Carino NJ (2004) Handbook on nondestructive testing of concrete. CRC Press, Boca Raton

  50. Marchisio M, D’Onofrio L, De Falco A, Frediani L, Guidoni F (2003) New tomographic techniques (micro-seismical and geoelectrical) for the non-destructive testing on masonry structures. In: International symposium non-destructive testing in civil engineering (NDT-CE 2003), Berlin, Germany, 16–19, September

  51. McCann DM, Forde MC (2001) Review of NDT methods in the assessment of concrete and masonry structures. NDT&E Int 34:71–84

    Article  Google Scholar 

  52. McCarter W, Ezirim H, Emerson M (1992) Absorption of water and chloride into concrete. Mag Concr Res 44:31–37

    Article  Google Scholar 

  53. McCarter WJ, Emerson M, Ezirim H (1995) Properties of concrete in the cover zone: developments in monitoring techniques. Mag Concr Res 47:243–251

    Article  Google Scholar 

  54. McGillivray P, Oldenburg D (1990) Methods for calculating Fréchet derivatives and sensitivities for the non-linear inverse problem: a comparative study. Geophys Prospect 38:499–524

    Article  Google Scholar 

  55. Monfore GE (1968) The electrical resisitivity of concrete. Journal of the PCA Research and Development Laboratories 10:35–48

    Google Scholar 

  56. Montemor H, Simoes A, Ferreira M (2003) Chloride-induced corrosion on reinforcing steel: from the fundamentals to the monitoring techniques. Cem Concr Comp 25:491–502

    Article  Google Scholar 

  57. Morelli R, Forde MC (1987) Electrical conduction through concrete using formation factor theories. In: Proceedings of the international conference on structural faults and repair, London, UK, 7–9 July

  58. Neithalath N, Weiss J, Olek J (2006) Characterizing enhanced porosity concrete using electrical impedance to predict acoustic and hydraulic performance. Cem Concr Res 36:2074–2085

    Article  Google Scholar 

  59. Newlands M, Jones M, Kandasami S, Harrison T (2008) Sensitivity of electrode contact solutions and contact pressure in assessing electrical resistivity of concrete. Mater Struct 41:621–632

    Google Scholar 

  60. Nilsson L et al. (1996) Chloride penetration into concrete, state-of-the-art, transport processes, corrosion initiation, test methods and prediction models, The Report No. 53. HETEK, Road Directorate, Copenhagen

  61. Polder RB (2001) Test methods for on site measurement of resistivity of concrete—a RILEM TC-154 technical recommendation. Constr Build Mater 15:125–131

    Article  Google Scholar 

  62. Report rep040 (2007) Non-destructive evaluation of the penetrability and thickness of the concrete cover—state-of-the-art report of RILEM technical committee 189-NEC, ISBN: 978-2-35158-054-7

  63. Robert A (1998) Dielectric permittivity of concrete between 50 MHz and 1 GHz and GPR measurements for building materials evaluation. J Appl Geophys 40:89–94

    Article  Google Scholar 

  64. Rostam S (2005) Service life design of concrete structures—a challenge to designers as well as to owners. Asian Journal of Civil Engineering (Building and Housing) 6:423–445

    Google Scholar 

  65. Rupnow TD, Icenogle P (2011) Evaluation of surface resistivity measurements as an alternative to the rapid chloride permeability test for quality assurance and acceptance. Louisiana Department of Transportation, p 68

  66. Saleem M, Shameem M, Hussain S, Maslehuddin M (1996) Effect of moisture, chloride and sulphate contamination on the electrical resistivity of Portland cement concrete. Constr Build Mater 10:209–214

    Article  Google Scholar 

  67. Sass O, Viles HA (2010) 2D resistivity surveys of the moisture contents of historic limestone walls in Oxford, UK: Implications for understanding catastrophic stone deterioration. In: Limestone in the built environment: present day challenges for preservation of the past. Geological Society of London Special Publication 331:237–249

  68. Sbartaï Z-M, Laurens S, Rhazi J, Balayssac J-P, Arliguie G (2007) Using radar direct wave for concrete condition assessment: correlation with electrical resistivity. J Appl Geophys 62:361–374

    Article  Google Scholar 

  69. Sbartaï Z-M, Breysse D, Larget M, Balayssac J-P (2012) Combining NDT techniques for improved evaluation of concrete properties. Cem Concr Compos 34:725–733

    Article  Google Scholar 

  70. Seppänen A (2009) Electrical resistance tomography imaging of concrete. In: Alexander et al (eds) Concrete repair, rehabilitation and retrofitting II. Taylor & Francis Group, London

  71. Schiessl P, Raupach M (1994) New approaches for monitoring the corrosion risk for the reinforcement—installation of sensors. In: Proceedings of concrete across borders conference, Odense, Denmark, vol 1, pp 65–77

  72. Spragg RP, Castro J, Nantung TE, Paredes M, Weiss WJ (2011) Variability analysis of the bulk resistivity measured using concrete cylinders. Publication FHWA/IN/JTRP-2011/21. Joint Transportation Research Program, Indiana Department of Transportation and Purdue University, West Lafayette, Indiana. doi:10.5703/1288284314646

  73. Tran N, Ambrosino R (1972) Mesure de la teneur en eau des sols et des matériaux par une méthode capacitive: 3—applications de la méthode capacitive de mesure de la teneur en eau. Bull Ponts Chaussées 60:173–175

    Google Scholar 

  74. Tumidajski P, Schumacher A, Perron S, Gu P, Beaudoin J (1996) On the relationship between porosity and electrical resistivity in cementitious systems. Cem Concr Res 26:539–544

    Article  Google Scholar 

  75. Tutti K (1982) Corrosion of steel in concrete, Research report 4.82. Swedish Cement and Concrete Research Institute, Stockholm

  76. Van der Kruk J, Streich R, Green A (2006) Properties of surface waveguides derived from separate and joint inversion of dispersive TE and TM GPR data. Geophysics 71:K19–K29

    Article  Google Scholar 

  77. Villain G, Thiery T (2006) Gammadensimetry: a method to determine drying and carbonation profiles in concrete. NDT&E Int 39:328–337

    Article  Google Scholar 

  78. Villain G, Ihamouten A, Dérobert X (2011) Use of frequency power law to link the results of two EM testing methods for the characterization of humid concrete. In: 6th international workshop on advanced ground penetrating radar (IWAGPR), Aachen, Germany, 22–24 June

  79. Villain G, Sbartaï Z, Dérobert X, Garnier V, Balayssac J-P (2012) Durability diagnosis of a concrete structure in a tidal zone by combining NDT methods: laboratory tests and case study. Constr Build Mater 37:893–903

    Article  Google Scholar 

  80. Weiss J, Snyder K, Bullard J, Bentz D (2013) Using a saturation function to interpret the electrical properties of partially saturated concrete. J Mater Civ Eng 25:1097–1106

    Google Scholar 

  81. Wenner F (1915) A method for measuring earth resistivity. Bur Stand 12:469–478

    Article  Google Scholar 

  82. Whiting D, Nagi M (2003) Electrical resistivity of concrete—literature review. PCA R&D serial no. 2457, Portland Cement Association

  83. Whittington H, McCarter J, Forde M (1981) The conduction of electricity through concrete. Mag Concr Res 33:48–60

    Article  Google Scholar 

  84. Yin X, Hutchins DA, Diamond GG, Purnell P (2010) Non-destructive evaluation of concrete using a capacitive imaging technique: preliminary modelling and experiments. Cem Concr Res 40:1734–1743

    Article  Google Scholar 

Download references

Acknowledgments

We want to thank O. Coffec and A. Joubert of IFSTTAR (Institut Français des Sciences et Technologies des Transports, de l’Aménagement et des Réseaux), Nantes, France and C. Lestréhan and S. Roux of CETE (Centre d’Etudes Techniques de l’Equipment) de L’Ouest, Ouvrages d’art et maritime, Saint-Brieuc, France for the technical support they provided. This research was funded by the European Union as part of the Marie Curie Initial Training Network Framework 7 Project TEAM (Training in European Asset Management) and the Ministère de l’Ecologie, du Développement durable et de l’Energie of France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. du Plooy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

du Plooy, R., Villain, G., Palma Lopes, S. et al. Electromagnetic non-destructive evaluation techniques for the monitoring of water and chloride ingress into concrete: a comparative study. Mater Struct 48, 369–386 (2015). https://doi.org/10.1617/s11527-013-0189-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-013-0189-z

Keywords

Navigation