Skip to main content
Log in

Finite element modelling of hardening concrete: application to the prediction of early age cracking for massive reinforced structures

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This article presents finite element modelling to predict the early age cracking risk of concrete structures. It is a tool to help practitioners choose materials and construction techniques to reduce the risk of cracking. The proposed model uses original hydration modelling (allowing composed binder to be modelled and hydric consumption to be controlled) followed by a non-linear mechanical model of concrete at early ages involving creep and damage coupling. The article considers hydration effects on this mechanical model, which is based on a non-linear viscoelastic formulation combined with an anisotropic, regularized damage model. Details of the numerical implementation are given in the article and the model is applied successively to a laboratory structure and to a massive structure in situ (experimental wall of a nuclear power plant studied in the framework of the French national research project CEOS.fr).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Acker P, Ulm F-J (2001) Creep and shrinkage of concrete: physical origins and practical measurements. Nucl Eng Des 203:143–158

    Article  Google Scholar 

  2. Bažant ZP, Prasannan S (1989) Solidification theory for concrete creep I. Formulation. J Eng Mech 115(8):1691–1703

    Article  Google Scholar 

  3. Benboudjema F, Torrenti J-M (2006) Early age behaviour of concrete nuclear containments. In: 2nd edition of the international symposium on advances in concrete through science and engineering, RILEM Publication PRO 51, Quebec

  4. Benboudjema F, Torrenti JM (2008) Early age behaviour of concrete nuclear containments. Nucl Eng Des 238(10):2495–2506

    Article  Google Scholar 

  5. Bentz DP (2000) CEMHYD3D: a three-dimensional cement hydration and microstructure development modelling package. Version 2.0. NISTIR 6485, U.S. Department of Commerce, Washington, April 2000

  6. Bernard O, Ulm F-J, Lemarchand E (2003) A multiscale micromechanics-hydration model fir the early age elastic properties of cement-based materials. Cem Concr Res 33:1293–1309

    Article  Google Scholar 

  7. Bjøntegaard Ø, Sellevold EJ (1998) Thermal dilatation—autogenous shrinkage: how to separate? In: Autogenous shrinkage of concrete: proceedings of the international workshop of Hiroshima, Hiroshima, Japan, June 1998

  8. Brooks JJ (2005) 30-Year creep and shrinkage of concrete. Mag Concr Res 57(9):545–556

    Article  Google Scholar 

  9. Buffo-Lacarrière L, Sellier A (2009) Behaviour of HPC nuclear waste storage structures in leaching environment. In: Concrete in aggressive aqueous environments, RILEM TC 211-PAE final conference, Toulouse, France, 3–5 June 2009

  10. Buffo-Lacarrière L, Sellier A, Escadeillas G, Turatsinze A (2007) Multiphasic finite element modelling of concrete hydration. Cem Concr Res 37(2):131–138

    Article  Google Scholar 

  11. Cast3M (2005) CEA—DEN/DM2S/SEMT. http://www-cast3m.cea.fr/cast3m/index.jsp

  12. De Schutter G (2002) Finite element simulation of thermal cracking in massive hardening concrete elements using degree of hydration based material laws. Comput Struct 80:2035–2042

    Article  Google Scholar 

  13. Eierle B, Schikora K (1999) Computational modelling of concrete at early ages using DIANA. In: Diana-World 1999, issue 2. http://www.bst.bv.tum.de/pdf/diana.pdf

  14. François D, Pineau A, Zaoui A (1991) Comportement mécanique des matériaux, vol 1. Hermès, Paris, ISSN 0986-4873

  15. Gutsch A, Rostásy FS (1994) Young concrete under high tensile stresses—creep, relaxation and cracking. In: Thermal cracking at early ages, Rilem proceeding 25. Munich, Deutschland, ISBN 0-419-187103, pp. 111–119

  16. Hauggaard AB, Damkilde L, Hansen PF (1999) Transitional thermal creep of early age concrete. J Eng Mech 125(4):458–465

    Article  Google Scholar 

  17. Hillerborg A, Modeer M, Petersson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6:773–782

    Article  Google Scholar 

  18. Ishikawa Y, Kunieda M, Srisoros W, Tanabe T (2005) Constitutive law based on solidification. In: Creep, shrinkage and durability of concrete and concrete structures (CONCREEP 7), Ecole Centrale de Nantes, Nantes, 12–14 September 2005

  19. Kachanov LM (1986) Introduction to continuum damage mechanics. Martinus Nijhoff, Dordrecht. ISBN 90-247-3319-7

  20. Lackner R, Mang HA (2004) Chemoplastic material model for the simulation of early-age cracking: from the constitutive law to numerical analyses of massive concrete structures. Cem Concr Compos 26:551–562

    Article  Google Scholar 

  21. Laplante P, Boulay C (1994) Evolution du coefficient de dilatation thermique du béton en fonction de sa maturité aux tout premiers ages. Mater Struct 27:596–605 (in French)

    Google Scholar 

  22. Laube M (1990) Werkstoffmodell zur Berechnung von Temperaturspannungen in massigen Betonbauteilen im jungen Alter. Dissertation TU Braunschweig

  23. Mabrouk R, Ishida T, Maekawa K (2004) A unified solidification model of hardening concrete composite for predicting the young age behavior of concrete. Cem Concr Compos 26:453–461

    Article  Google Scholar 

  24. Onken P, Rostásy F (1995) Wirksame Betonzugfestigkeit im Bauwerk bei früh einsetzendem Temperaturzwang. DAfStb Heft 449. Beuth-Verlag, Berlin

    Google Scholar 

  25. Sanahuja J, Dormieux L, Chanvillard G (2007) Modelling elasticity of a hydrating cement paste. Cem Concr Res 37:1427–1439

    Article  Google Scholar 

  26. Sellier A, Bary B (2002) Coupled damage tensors and weakest link theory for the description of crack induced anisotropy in concrete. Eng Fract Mech 69:1925–1939

    Article  Google Scholar 

  27. Sellier A, Buffo-Lacarriere L (2009) Toward a simple and unified modelling of basic creep, shrinkage and drying creep for concrete. Eur J Environ Civil Eng 13(10):1161–1182

    Google Scholar 

  28. Smilauer V, Bittnar Z (2006) Microstructure-based micromechanical prediction of elastic properties in hydrating cement paste. Cem Concr Res 36(9):1708–1718

    Article  Google Scholar 

  29. Stefan L, Benboudjema F, Torrenti J-M, Bissonnette B (2010) Prediction of elastic properties of cement pastes at early ages. Comput Mater Sci 47(3):775–784

    Article  Google Scholar 

  30. Torrenti J-M, Bendoudjema F (2005) Mechanical threshold of cementitious materials at early age. Mater Struct 38(277):299–304

    Article  Google Scholar 

  31. Ulm F-J, Coussy O (1998) Couplings in early-age concrete: from material modeling to structural design. Int J Solids Struct 35(31–32):4295–4311

    Google Scholar 

  32. Van Breugel K (1995) Numerical simulation of hydration and microstructural development in hardening cement-based materials. Cem Concr Res 25(2):319–331

    Article  Google Scholar 

  33. Waller V, D’Aloïa L, Cussigh F, Lecrux S (2004) Using the maturity method in concrete cracking control at early ages. Cem Concr Compos 26:589–599

    Article  Google Scholar 

  34. Yang Q-S, Li C-J (2006) Evolution of properties in hydration of cements: a numerical study. Mech Res Commun 33:717–727

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the French Group VINCI Construction Grands Projets (associated with ANRT for the CIFRE doctoral scholarship), of the French national program CEOS.fr and the French National Research Agency (ANR) under the MEFISTO research program (control of cracking in concrete structures—grant VD08_323065). We are also grateful to CEA/DEN/DM2S/SEMT for providing the finite element code CASTEM2005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurie Buffo-Lacarrière.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buffo-Lacarrière, L., Sellier, A., Turatsinze, A. et al. Finite element modelling of hardening concrete: application to the prediction of early age cracking for massive reinforced structures. Mater Struct 44, 1821–1835 (2011). https://doi.org/10.1617/s11527-011-9740-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-011-9740-y

Keywords

Navigation