Skip to main content
Log in

Photo-induced Contraction of Layered Materials

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

A Correction to this article was published on 19 September 2023

This article has been updated

Abstract

Ultrafast atomic dynamics induced by electronic and optical excitation opens new possibilities for functionalization of two-dimensional and layered materials. Understanding the impact of perturbed valence band populations on both the strong covalent bonds and relatively weaker van der Waals interactions is important for these anisotropic systems. While the dynamics of strong covalent bonds has been explored both experimentally and theoretically, relatively fewer studies have focused on the impact of excitation on weak bonds like van der Waals and hydrogen-bond interactions. We perform non-adiabatic quantum molecular dynamics (NAQMD) simulations to study photo-induced dynamics in MoS2 bilayer. We observe photo-induced non-thermal contraction of the interlayer distance in the MoS2 bilayer within 100 femtoseconds after photoexcitation. We identify a large photo-induced redistribution of electronic charge density, whose Coulombic interactions could explain the observed inter-layer contraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. H. N. Wang, C. J. Zhang, W. M. Chan, S. Tiwari, and F. Rana, Nature Communications 6 8831 (2015).

    Article  CAS  Google Scholar 

  2. J. R. Schaibley, H. Y. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, and X. D. Xu, Nature Reviews Materials 1 16055 (2016).

    Article  CAS  Google Scholar 

  3. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nat Nanotechnol 7, 699 (2012).

    Article  CAS  Google Scholar 

  4. V. Kochat et al., Advanced Materials 29, 1703754 (2017).

    Article  Google Scholar 

  5. S. Cho et al., Science 349, 625 (2015).

    Article  CAS  Google Scholar 

  6. S. Song, D. H. Keum, S. Cho, D. Perello, Y. Kim, and Y. H. Lee, Nano Letters 16, 188 (2016).

    Article  CAS  Google Scholar 

  7. A. V. Kolobov, P. Fons, and J. Tominaga, Physical Review B 94, 094114 (2016).

    Article  Google Scholar 

  8. L. Waldecker, R. Bertoni, H. Hubener, T. Brumme, T. Vasileiadis, D. Zahn, A. Rubio, and R. Ernstorfer, Physical Review Letters 119, 036803 (2017).

    Article  CAS  Google Scholar 

  9. C. R. Bealing and R. Ramprasad, Journal of Chemical Physics 139, 174904 (2013).

    Article  Google Scholar 

  10. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  Google Scholar 

  11. J. P. Perdew, K. Burke, and M. Ernzerhof, Physical Review Letters 77, 3865 (1996).

    Article  CAS  Google Scholar 

  12. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, Journal of Chemical Physics 132, 154104 (2010).

    Article  Google Scholar 

  13. F. Shimojo, S. Ohmura, W. W. Mou, R. K. Kalia, A. Nakano, and P. Vashishta, Computer Physics Communications 184, 1 (2013).

    Article  CAS  Google Scholar 

  14. J. C. Tully, The Journal of Chemical Physics 93, 1061 (1990).

    Article  CAS  Google Scholar 

  15. E. M. Mannebach et al., Nano Letters, article ASAP, doi:10.1021/acs.nanolett.7b03955 (2017).

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article was updated to correct Lindsay Bassman Oftelie’s name.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumazoe, H., Krishnamoorthy, A., Bassman Oftelie, L. et al. Photo-induced Contraction of Layered Materials. MRS Advances 3, 333–338 (2018). https://doi.org/10.1557/adv.2018.127

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.127

Navigation