Skip to main content
Log in

Copper corrosion behaviour in acidic sulphate media in the presence of 5-methyl-1H-benzotriazole and 5-chloro-1H-benzotriazole

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The influence of 1H-benzotriazole, 5-methyl-1H-benzotriazole and 5-chloro-1H-benzotriazole on copper corrosion in an acidic sulphate medium was studied, as well as the influence of chloride ions on the corrosion behaviour of copper. The methods used were potentiodynamic measurements, open circuit potential and mass loss. The results show that the examined compounds possess good inhibitory properties in an acidic medium. The potentiodynamic polarisation results indicate that the degree of copper protection against corrosion depends on the concentration of Cl ions and the concentration of organic compounds. The adsorption of these compounds on the copper surface follows the Langmuir adsorption isotherm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abd El Halem, S. M., Abd El Wanees, S., & Bahgat, A. (2014). Environmental factors affecting the corrosion behaviour of reinforcing steel. VI. Benzotriazole and its derivatives as corrosion inhibitors of steel. Corrosion Science, 87, 321–333. DOI: 10.1016/j.corsci.2014.06.043.

    Article  Google Scholar 

  • Abdullah, A. M., Al-Kharafi, F. M., & Ateya, B. G. (2006). Intergranular corrosion of copper in the presence of benzotriazole. Scripta Materialia, 54, 1673–1677. DOI: 10.1016/j.scriptamat.2006.01.014.

    Article  CAS  Google Scholar 

  • Al Kharafi, F. M., Abdullah, A.M., Ghayad, I.M., & Ateya, B. G. (2007). Effect of sulfide pollution on the stability of the protective film of benzotriazole on copper. Applied Surface Science, 253, 8986–8991. DOI: 10.1016/j.apsusc.2007.05.017.

    Article  CAS  Google Scholar 

  • Amin, M. A., & Khaled, K. F. (2010). Copper corrosion inhibition in O2-saturated H2SO4 solutions. Corrosion Science, 52, 1194–1204. DOI: 10.1016/j.corsci.2009.12.035.

    Article  CAS  Google Scholar 

  • Antonijević, M. M., Milić, S. M., Šerbula, S. M., & Bogdanović, G. D. (2005). The influence of chloride ions and benzotriazole on the corrosion behavior of Cu37Zn brass in alkaline medium. Electrochimica Acta, 50, 3693–3701. DOI: 10.1016/j.electacta.2005.01.023.

    Article  Google Scholar 

  • Antonijević, M. M., Milić, S. M., Dimitrijević, M. D., Petrović, M. B., Radovanović, M. B., & Stamenković, A. T. (2009a). The influence of pH and chlorides on electrochemical behavior of copper in the presence of benzotriazole. International Journal of Electrochemical Science, 4, 962–979.

    Google Scholar 

  • Antonijević, M. M., Milić, S. M., Radovanović, M. B., Petrović, M. B., & Stamenković, A. T. (2009b). Influence of pH and chlorides on electrochemical behavior of brass in presence of benzotriazole. International Journal of Electrochemical Science, 4, 1719–1734.

    Google Scholar 

  • Arancibia, A., Henriquez-Roman, J., Páez, M. A., Padilla-Campos, L., Zagal, J. H., Costamagna, J., & Cárdenas-Jirón, G. (2006). Influence of 5-chloro and 5-methyl benzotriazole on the corrosion of copper in acid solution: An experimental and a theoretical approach. Journal of Solid State Electrochemistry, 10, 894–904. DOI: 10.1007/s10008-005-0014-x.

    Article  CAS  Google Scholar 

  • Arukalam, I. O., Madufor, I. C., Ogbobe, O., & Oguzie, E. E. (2014). Acidic corrosion inhibition of copper by hydroxyethyl cellulose. British Journal of Applied Science & Technology, 4, 1445–1460. DOI: 10.9734/bjast/2014/5463.

    Article  CAS  Google Scholar 

  • Asefi, D., Arami, M., & Mahmoodi, M. N. (2010). Electrochemical effect of cationic gemini surfactant and halide salts on corrosion inhibition of low carbon steel in acid medium. Corrosion Science, 52, 794–800. DOI: 10.1016/j.corsci.2009.10.039.

    Article  CAS  Google Scholar 

  • Attarchi, M., Roshan, M. S., Norouzi, S., Sadrnezhaad, S. K., & Jafari, A. (2009). Electrochemical potential noise analysis of Cu—BTA system using wavelet transformation. Journal of Electroanalytical Chemistry, 633, 240–245. DOI: 10.1016/j.jelechem.2009.06.008.

    Article  CAS  Google Scholar 

  • Avramović, Z., & Antonijević, M. (2004). Corrosion of colddeformed brass in acid sulphate solution. Corrosion Science, 46, 2793–2802. DOI: 10.1016/j.corsci.2004.03.010.

    Article  Google Scholar 

  • Badawy, W. A., Ismail, K. M., & Fathi, A. M. (2009). The influence of the copper/nickel ratio on the electrochemical behavior of Cu−Ni alloys in acidic sulfate solutions. Journal of Alloys and Compounds, 484, 365–370. DOI: 10.1016/j.jallcom.2009.04.101.

    Article  CAS  Google Scholar 

  • Bian, Y. F., Zhai, W. J., & Zhu, B. Q. (2013). 5-Methyl-1H-benzotriazole as potential corrosion inhibitor for electrochemical—mechanical planarization of copper. Transactions of Nonferrous Metals Society of China, 23, 2431–2438. DOI: 10.1016/s1003-6326(13)62751-x.

    Article  CAS  Google Scholar 

  • Cano, E., Polo, J. L., La Iglesia, A., & Bastidas, J. M. (2004). A study on the adsorption of benzotriazole on copper in hydrochloric acid using the inflection point of the isotherm. Adsorption, 10, 219–225. DOI: 10.1023/b:adso.0000046358.35572.4c.

    Article  CAS  Google Scholar 

  • Cao, P. G., Yao, J. L., Zheng, J. W., Gu, R. A., & Tian, Z. Q. (2002). Comparative study of inhibition effects of benzotriazole for metals in neutral solutions as observed with surfaceenhanced Raman spectroscopy. Langmuir, 18, 100–104. DOI: 10.1021/la010575p.

    Article  CAS  Google Scholar 

  • Choudhury, M. R., Vidic, R. D., & Dzombak, D. A. (2014). Inhibition of copper corrosion by tolyltriazole in cooling systems using treated municipal wastewater as makeup water. Arabian Journal for Science and Engineering, 39, 7741–7749. DOI: 10.1007/s13369-014-1385-z.

    Article  CAS  Google Scholar 

  • Curkovic, H. O., Stupnisek-Lisac, E., & Takenouti, H. (2009). Electrochemical quartz crystal microbalance and electrochemical impedance spectroscopy study of copper corrosion inhibition by imidazoles. Corrosion Science, 51, 2342–2348. DOI: 10.1016/j.corsci.2009.06.018.

    Article  Google Scholar 

  • Dermaj, A., Hajjaji, N., Joiret, S., Rahmouni, K., Srhiri, A., Takenouti, H., & Vivier, V. (2007). Electrochemical and spectroscopic evidences of corrosion inhibition of bronze by a triazole derivative. Electrochimica Acta, 52, 4654–4662. DOI: 10.1016/j.electacta.2007.01.068.

    Article  CAS  Google Scholar 

  • El-Sherif, R. M., Ismail, K. M., & Badawy, W. A. (2004). Effect of Zn and Pb as alloying elements on the electrochemical behavior of brass in NaCl solutions. Electrochimica Acta, 49, 5139–5150. DOI: 10.1016/j.electacta.2004.06.027.

    Article  CAS  Google Scholar 

  • Fazal, M. A., Haseeb, A. S. M. A., & Masjuki, H. H. (2013). Corrosion mechanism of copper in palm biodiesel. Corrosion Science, 67, 50–59. DOI: 10.1016/j.corsci.2012.10.006.

    Article  CAS  Google Scholar 

  • Feng, Y., Siow, K. S., Teo, W. K., & Hsieh, A. K. (1999). The synergistic effects of propargyl alcohol and potassium iodide on the inhibition of mild steel in 0.5 M sulfuric acid solution. Corrosion Science, 41, 829–852. DOI: 10.1016/s0010-938x(98)00144-9.

    Article  CAS  Google Scholar 

  • Finšgar, M., & Milošev, I. (2010). Inhibition of copper corrosion by 1,2,3-benzotriazole: A review. Corrosion Science, 52, 2737–2749. DOI: 10.1016/j.corsci.2010.05.002.

    Article  Google Scholar 

  • Frignani, A., Tommesani, L., Brunoro, G., Monticelli, C., & Fogagnolo, M. (1999). Infuence of the alkyl chain on the protective effects of 1,2,3-benzotriazole towards copper corrosion. Part I: Inhibition of the anodic and cathodic reactions. Corrosion Science, 41, 1205–1215. DOI: 10.1016/s0010-938x(98)00191-7.

    Article  CAS  Google Scholar 

  • Gelman, D., Starosvetsky, D., & Ein-Eli, Y. (2014). Copper corrosion mitigation by binary inhibitor compositions of potassium sorbate and benzotriazole. Corrosion Science, 82, 271–279. DOI: 10.1016/j.corsci.2014.01.028.

    Article  CAS  Google Scholar 

  • Gerengi, H., Darowicki, K., Bereket, G., & Slepski, P. (2009). Evaluation of corrosion inhibition of brass-118 in artificial seawater by benzotriazole using dynamic EIS. Corrosion Science, 51, 2573–2579. DOI: 10.1016/j.corsci.2009.06.040.

    Article  CAS  Google Scholar 

  • Guo, L., Zhu, S. H., Zhang, S. T., He, Q., & Li, W. H. (2014). Theoretical studies of three triazole derivatives as corrosion inhibitors for mild steel in acidic medium. Corrosion Science, 87, 366–375. DOI: 10.1016/j.corsci.2014.06.040.

    Article  CAS  Google Scholar 

  • Ilkhchi, M. O., Yoozbashizadeh, H., & Sadegh Safarzadeh, M. (2007). The effect of additives on anode passivation in electrorefining of copper. Chemical Engineering and Processing, 46, 757–763. DOI: 10.1016/j.cep.2006.10.005.

    Article  CAS  Google Scholar 

  • Ismail, K. M., Fathi, A. M., & Badawy, W. A. (2006). Electrochemical behavior of copper-nickel alloys in acidic chloride solutions. Corrosion Science, 48, 1912–1925. DOI: 10.1016/j.corsci.2005.07.004.

    Article  CAS  Google Scholar 

  • Kear, G., Barker, B. D., & Walsh, F. C. (2004). Electrochemical corrosion of unalloyed copper in chloride media — a critical review. Corrosion Science, 46, 109–135. DOI: 10.1016/s0010-938x(02)00257-3.

    Article  CAS  Google Scholar 

  • Khaled, K. F., & Hackerman, N. (2004). Ortho-substituted anilines to inhibit copper corrosion in aerated 0.5 M hydrochloric acid. Electrochimica Acta, 49, 485–495. DOI: 10.1016/j.electacta.2003.09.005.

    Article  CAS  Google Scholar 

  • Khaled, K. F. (2008a). Guanidine derivative as a new corrosion inhibitor for copper in 3 % NaCl solution. Materials Chemisrty and Physics, 112, 104–111. DOI: 10.1016/j.matchemphys.2008.05.052.

    Article  CAS  Google Scholar 

  • Khaled, K. F. (2008b). Adsorption and inhibitive properties of a new synthesized guanidine derivative on corrosion of copper in 0.5 M H2SO4. Applied Surface Science, 255, 1811–1818. DOI: 10.1016/j.apsusc.2008.06.030.

    Article  CAS  Google Scholar 

  • Kokalj, A., Peljhan, S., Finsógar, M., & Milosóev, I. (2010). What determines the inhibition effectiveness of ATA, BTAH and BTAOH corrosion inhibitors on copper? Journal of the American Chemical Society, 132, 16657–16668. DOI: 10.1021/ja107704y.

    Article  CAS  Google Scholar 

  • Kosec, T., Milošev, I., & Pihlar, B. (2007). Benzotriazole as an inhibitor of brass corrosion in chloride solution. Applied Surface Science, 253, 8863–8873. DOI: 10.1016/j.apsusc.2007.04.083.

    Article  CAS  Google Scholar 

  • Lagrenée, M., Mernari, B., Bouanis, M., Traisnel, M., & Bentiss, F. (2002). Study of the mechanism and inhibiting efficiency of 3,5-bis(4-methylthiophenyl)-4H-1,2,3-triazole on mild steel corrosion in acidic media. Corrosion Science, 44, 573–588. DOI: 10.1016/s0010-938x(01)00075-0.

    Article  Google Scholar 

  • Lalitha, A., Ramesh, S., & Rajeswari, S. (2005). Surface protection of copper in acid medium by azoles and surfactants. Electrochimica Acta, 51, 47–55. DOI: 10.1016/j.electacta.2005.04.003.

    Article  CAS  Google Scholar 

  • Larabi, L., Benali, O., Mekelleche, S. M., & Harek, Y. (2006). 2-Mercapto-1-methylimidazole as corrosion inhibitor for copper in hydrochloric acid. Applied Surface Science, 253, 1371–1378. DOI: 10.1016/j.apsusc.2006.02.013.

    Article  CAS  Google Scholar 

  • Liu, S., Duan, J. M., Jiang, R. Y., Feng, Z. P., & Xiao, R. (2011). Corrosion inhibition of copper in tetra-N-butylammonium bromide aqueous solution by benzotriazole. Materials and Corrosion, 62, 47–52. DOI: 10.1002/maco.200905494.

    Article  CAS  Google Scholar 

  • Ma, H., Chen, S., Niu, L., Zhao, S., Li, S., & Li, D. (2002). Inhibition of copper corrosion by several Schiff bases in aerated halide solutions. Journal of Applied Electrochemistry, 32, 65–72. DOI: 10.1023/a:1014242112512.

    Article  CAS  Google Scholar 

  • Milić, S. M., & Antonijević, M. M. (2009). Some aspects of copper corrosion in presence of benzotriazole and chloride ions. Corrosion Science, 51, 28–34. DOI: 10.1016/j.corsci.2008.10.007.

    Article  Google Scholar 

  • Milošev, I. (2007). The effect of various halide ions on the passivity of Cu, Zn and Cu−xZn alloys in borate buffer. Corrosion Science, 49, 637–653. DOI: 10.1016/j.corsci.2006.06.009.

    Article  Google Scholar 

  • Modestov, A. D., Zhou, G. D., Wu, Y. P., Notoya, T., & Schweinsberg, D. P. (1994). A study of the electrochemical formation of Cu(I)—BTA films on copper electrodes and and the mechanism of copper corrosion inhibition in aqueous chloride/benzotriazole solutions. Corrosion Science, 36, 1931–1946. DOI: 10.1016/0010-938x(94)90028-0.

    Article  CAS  Google Scholar 

  • Moretti, G., & Guidi, F. (2002). Tryptophan as copper corrosion inhibitor in 0.5 M aerated sulfuric acid. Corrosion Science, 44, 1995–2011. DOI: 10.1016/s0010-938x(02)00020-3.

    Article  CAS  Google Scholar 

  • Otmacić, H., Telegdi, J., Papp, K., & Stupnišek-Lisac, E. (2004). Protective properties of an inhibitor layer formed on copper in neutral chloride solution. Journal of Applied Electrochemistry, 34, 545–550. DOI: 10.1023/b:jach.0000021873.30314.eb.

    Article  Google Scholar 

  • Petrović, M. B., Radovanović, M. B., Simonović, A. T., Milić, S. M., & Antonijević, M. M. (2012a). The effect of cysteine on the behaviour of the copper in neutral and alkaline sulphate solutions. International Journal of Electrochemical Science, 7, 9043–9057.

    Google Scholar 

  • Petrović, M. B., Simonović, A. T., Radovanović, M. B., Milić, S. M., & Antonijević, M. M. (2012b). Influence of purine on copper behavior in neutral and alkaline sulfate solutions. Chemical Papers, 66, 664–676. DOI: 10.2478/s11696-012-0174-y.

    Google Scholar 

  • Quartarone, G., Battilana, M., Bonaldo, L., & Tortato, T. (2008). Investigation of the inhibition effect of indole-3-carboxylic acid on the copper corrosion in 0.5 M H2SO4. Corrosion Science, 50, 3467–3474. DOI: 10.1016/j.corsci.2008.09.032.

    Article  CAS  Google Scholar 

  • Quartarone, G., Ronchin, L., Vavasori, A., Tortato, C., & Bonaldo, L. (2012). Inhibitive action of gramine towards corrosion of mild steel in deaerated 1.0 M hydrochloric acid solutions. Corrosion Science, 64, 82–89. DOI: 10.1016/j.corsci.2012.07.008.

    Article  CAS  Google Scholar 

  • Radovanović, M. B., Petrović, M. B., Simonović, A. T., Milić, S. M., & Antonijević, M. M. (2013). Cysteine as a green corrosion inhibitor for Cu37Zn brass in neutral and weakly alkaline sulphate solutions. Environmental Science and Pollution Research, 20, 4370–4381. DOI: 10.1007/s11356-012-1088-5.

    Article  Google Scholar 

  • Scendo, M. (2007). Inhibitive action of the purine and adenine for copper corrosion in sulphate solutions. Corrosion Science, 49, 2985–3000. DOI: 10.1016/j.corsci.2007.01.002.

    Article  CAS  Google Scholar 

  • Scendo, M. (2008). The influence of adenine on corrosion of copper in chloride solutions. Corrosion Science, 50, 2070–2077. DOI: 10.1016/j.corsci.2008.04.007.

    Article  CAS  Google Scholar 

  • Sherif, E. M., & Park, S. M. (2006). Effects of 2-amino-5-ethylthio-1,3,4-thiadiazole on copper corrosion as a corrosion inhibitor in aerated acidic pickling solutions. Electrochimica Acta, 51, 6556–6562. DOI: 10.1016/j.electacta.2006.04.047.

    Article  CAS  Google Scholar 

  • Simonović, A. T., Petrović, M. B., Radovanović, M. B., Milić, S. M., & Antonijević, M. M. (2014). Inhibition of copper corrosion in acidic sulphate media by eco-friendly amino acid compound. Chemical Papers, 68, 362–371. DOI: 10.2478/s11696-013-0458-x.

    Google Scholar 

  • Szöcs, E., Vastag, G., Shaban, A., & Kálmán, E. (2005). Electrochemical behaviour of an inhibitor film formed on copper surface. Corrosion Science, 47, 893–908. DOI: 10.1016/j.corsci.2004.06.029.

    Article  Google Scholar 

  • Tian, H., Li, W., & Hou, B. (2011). Novel application of a hormone biosynthetic inhibitor for the corrosion resistance enhancement of copper in synthetic seawater. Corrosion Science, 53, 3435–3445. DOI: 10.1016/j.corsci.2011.06.025.

    Article  CAS  Google Scholar 

  • Todorović, D., Drazić-Janković, Z., & Marković, D. (2008). Determination of the degree of adsorption on copper and brass tins by changing the temperature on the surface before inhibition, by following the corrosion parameters. Association of Metallurgical Engineers of Serbia, 14, 285–293.

    Google Scholar 

  • Todorović, D. A., Milenković, D. D., Milosavljević, M. M., & Marković, D. A. (2012). Uticaj želatina na koroziono ponašanje bakra u kiseloj sredini. Hemijska Industrija, 66, 193–200. DOI: 10.2298/hemind110616089t. (in Serbian)

    Article  Google Scholar 

  • Tüken, T., Yazici, B., & Erbil, M. (2004). The electrochemical synthesis and corrosion performance of polypyrrole on brass and copper. Progress in Organic Coatings, 51, 152–160. DOI: 10.1016/j.porgcoat.2004.07.008.

    Article  Google Scholar 

  • Villamil, R. F. V., Corio, P., Rubim, J. C., & Agostinho, S. M. L. (2002). Sodium dodecylsulfate-benzotriazole synergistic effect as an inhibitor of processes on copper — chloridric acid interfaces. Journal of Electroanalytical Chemistry, 535, 75–83. DOI: 10.1016/s0022-0728(02)01153-1.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan M. Antonijevic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tasic, Z.Z., Antonijevic, M.M. Copper corrosion behaviour in acidic sulphate media in the presence of 5-methyl-1H-benzotriazole and 5-chloro-1H-benzotriazole. Chem. Pap. 70, 620–634 (2016). https://doi.org/10.1515/chempap-2015-0248

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0248

Keywords

Navigation