Skip to main content
Log in

Behaviour of selected pesticide residues in blackcurrants (Ribes nigrum) during technological processing monitored by liquid-chromatography tandem mass spectrometry

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In this experiment, the behaviour of ten pesticides on field-sprayed blackcurrants (Ribes nigrum) after washing, juicing and cooking was investigated. The concentration level changes in two acaricides (fenazaquin, propargite), three insecticides (alpha-cypermethrin, deltamethrin and lambdacyhalothrin) and five fungicides (boscalid, bupirimate, difenoconazole, pyraclostrobin, thiophanate-methyl) were quantified. Analysis was carried out using the QuEChERS method followed by chromatographic analysis based on LC-MS/MS. The matrix effects ranged from —(17.4 ± 8.1) % to (15.9 ± 7.8) %. The limits of detection and limits of quantification were 0.003 mg kg−1 and 0.01 mg kg−1, respectively. The mean recoveries of the analytes ranged between 71 % and 109 %. The processing factors of all the blackcurrant products were determined. Washing reduced the pesticide residues up to 71 %. Juicing significantly reduced all the pesticide residues (processing factors (PFs) ranged 0.14–0.47). Cooking resulted in a decrease in residues up to 82 %. The residue levels of alpha-cypermethrin, deltamethrin and lambda-cyhalothrin in blackcurrant jam increased, and PFs > 1 were noted as PF = 1.38, 1.66 and 1.04, respectively. Cluster analysis was performed to find any similarity in the behaviour of pesticides after processing. The results confirmed that solubility, polarity and mode of action could be used to explain differences in the behaviour of pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahammed Shabeer, T. P., Kaushik, B., Manjusha, J., Rushali, G., Sagar, U., Sandip, H., & Dasharath, O. (2015). Residue dissipation and processing factor for dimethomorph, famoxadone and cymoxanil during raisin preparation. Food Chemistry, 170, 180–185. DOI: 10.1016/j.foodchem.2014.08.008.

    Article  Google Scholar 

  • Aktar, W., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology, 2, 1–12. DOI: 10.2478/v10102-009-0001-7.

    Article  Google Scholar 

  • Beattie, J., Crozier, A., & Duthie, G. G. (2005). Potential health benefits of berries. Current Nutrition & Food Science, 1, 71–86. DOI: 10.2174/1573401052953294.

    Article  CAS  Google Scholar 

  • Bicchi, C., Balbo, C., Binello, A., & D’Amato, A. (2005). HPLC-UV determination of pesticide residues at 0.01 ppm in apple and pear pulp used for baby food. Journal of High Resolution Chromatography, 19, 105–110. DOI: 10.1002/jhrc.1240190209.

    Article  Google Scholar 

  • Carneiro, R. P., Oliveira, F. A. S., Madureira, F. D., Silva, G., de Souza, W. R., & Pereira Lopes, R. P. (2013). Development and method validation for determination of 128 pesticides in bananas by modified QuEChERS and UHPLC-MS/MS analysis. Food Control, 33, 413–423. DOI: 10.1016/j.foodcont.2013.02.027.

    Article  CAS  Google Scholar 

  • Chamkasem, N., Ollis, L. W., Harmon, T., Lee, S., & Mercer, G. (2013). Analysis of 136 pesticides in avocado using a modified QuEChERS method with LC-MS/MS and GC-MS/MS. Journal of Agriculture and Food Chemistry, 61, 2315–2329. DOI: 10.1021/jf304191c.

    Article  CAS  Google Scholar 

  • Derco, J., Valiĉková, M., Šilhárová, K., Dudáš, J., & Luptáková, A. (2013). Removal of selected chlorinated micropollutants by ozonation. Chemical Papers, 67, 1585–1593. DOI: 10.2478/s11696-013-0324-x.

    Article  CAS  Google Scholar 

  • European Commission (1991). Council directive 91/414/EEC of 15 July 1991 concerning the placing of plant protection products on the market. Brussels, Belgium: European Commission.

    Google Scholar 

  • European Commission (2014). Document No. SANCO/12571/2013 guidance document on analytical quality control and validation procedures for pesticide residues analysis in food and feed. Brussels, Belgium: European Commission.

    Google Scholar 

  • Han, Y. T., Xu, J., Dong, F. S., Li, W.M., Liu, X. G., Li, Y. B., Kong, Z. Q., Zhu, Y. L., Liu, N., & Zheng, Y. Q. (2013). The fate of spirotetramat and its metabolite spirotetramat-enol in apple samples during apple cider processing. Food Control, 34, 283–290. DOI: 10.1016/j.foodcont.2013.05.009.

    Article  CAS  Google Scholar 

  • Holland, P. T., Hamilton, D., Ohlin, B., & Skidmore, M. (1994). Effects of storage and processing on pesticide residues in plant products. Pure & Applied Chemistry, 66, 335–356. DOI: 10.1351/pac199466020335.

    Article  CAS  Google Scholar 

  • Kaushik, G., Satya, S., & Naik, S. N. (2009). Food processing a tool to pesticide residue dissipation—A review. Food Research International, 42, 26–40. DOI: 10.1016/j.foodres.2008.09.009.

    Article  CAS  Google Scholar 

  • Keikotlhaile, B. M., Spanoghe, P., & Steurbaut, W. (2010). Effects of food processing on pesticide residues in fruits and vegetables: A meta-analysis approach. Food & Chemical Toxicology, 48, 1–6. DOI: 10.1016/j.fct.2009.10.031.

    Article  CAS  Google Scholar 

  • Kong, Z. Q., Dong, F. S., Xu, J., Liu, X. G., Li, J., Li, Y, Tian, Y., Guo, L., Shan, W., & Zheng, Y. (2012). Degradation of acephate and its metabolite methamidophos in rice during processing and storage. Food Control, 23, 149–153. DOI: 10.1016/j.foodcont.2011.07.001.

    Article  CAS  Google Scholar 

  • Kumari, B., Madan, V. K., & Kathpal, T. S. (2006). Monitoring of pesticide residues in fruits. Environmental Monitoring & Assessment, 123, 407–412. DOI: 10.1007/s10661-006-1493-7.

    Article  CAS  Google Scholar 

  • Lehotay, S. J., Son, K. A., Kwon, H. Y., Koesukwiwat, U., Fu, W. S., Mastovska, K., Hoh, E., & Leepipatpiboon, N. (2010). Comparison of QuEChERS sample preparation methods for the analysis of pesticide residues in fruits and vegetables. Journal of Chromatography A, 1217, 2548–2560. DOI: 10.1016/j.chroma.2010.01.044.

    Article  CAS  Google Scholar 

  • Lister, C. E., Wilson, P. E., Sutton, K. H., & Morrison, S. C. (2002). Understanding the health benefits of blackcurrants. Acta Horticulturae, 585, 443–449. DOI: 10.17660/actahortic.2002.585.72.

    Article  CAS  Google Scholar 

  • López-López, T., Gil-Garcia, M. D., Martínez-Vidal, J. L., & Martínez-Galera, M. (2001). Determination of pyrethroids in vegetables by HPLC using continuous on-line postelution photoirradiation with fluorescence detection. Analytica Chimica Acta, 447, 101–111. DOI: 10.1016/s0003-2670(01)01305-8.

    Article  Google Scholar 

  • Łozowicka, B., Kaczyński, P., Jankowska, M., Rutkowska, E., & Hrynko, I. (2012a). Pesticide residues in raspberries (Rubus idaeus L.) and dietary risk assessment. Food Additives & Contaminants: Part B, Surveillance, 5, 165–171. DOI: 10.1080/19393210.2012.681398.

    Article  Google Scholar 

  • Łozowicka, B., Rutkowska, E., Jankowska, M., Kaczyński, P., & Hrynko, I. (2012b). Health risk analysis of pesticide residues in berry fruit from north-eastern Poland. Journal of Fruit & Ornamental Plant Research, 20, 83–95. DOI: 10.2478/v10290-012-0007-7.

    Google Scholar 

  • Łozowicka, B., Kaczyński, P., Rutkowska, E., Jankowska, M., & Hrynko, I. (2013). Evaluation of pesticide residues in fruit from Poland and health risk assessment. Agricultural Science, 4, 106–111. DOI: 10.4236/as.2013.45b020.

    Article  Google Scholar 

  • Malik, A. K., Blasco, C., & Pico, Y. (2010). Liquid chromatography—mass spectrometry in food safety. Journal of Chromatography A, 1217, 4018–4040. DOI: 10.1016/j.chroma.2010.03.015.

    Article  CAS  Google Scholar 

  • Pappas, C., Kyriakidis, N. V., & Athanasopoulos, P. E. (2003). Effects of storage conditions and fruit processing on the degradation of parathion methyl on apples and lemons. Food Additives & Contaminants, 20, 375–379. DOI: 10.1080/0265203031000082477.

    Article  CAS  Google Scholar 

  • Picó, Y., la Farré, M., Soler, C., & Barceló, D. (2007). Identification of unknown pesticides in fruits using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Imazalil as a case study of quantification. Journal of Chromatography A, 1176, 123–134. DOI: 10.1016/j.chroma.2007.10.071.

    Article  Google Scholar 

  • Rasmusssen, R. R., Poulsen, M. E., & Hansen, H. C. B. (2003). Distribution of multiple pesticide residues in apple segments after home processing. Food Additives & Contaminants, 20, 1044–1063. DOI: 10.1080/02652030310001615221.

    Article  CAS  Google Scholar 

  • Rawn, D.F. K., Quade, S.C., Sun, W. F., Fouguet, A., Bélanger, A., & Smith, M. (2008). Captan residue reduction in apples as a result of rinsing and peeling. Food Chemistry, 109, 790–796. DOI: 10.1016/j.foodchem.2008.01.061.

    Article  CAS  Google Scholar 

  • Simeonov, V. D. (2013). Classification. Statistical theory and methods. In A. H. El-Shaarawi, & W. W. Piegorsch (Eds.), Encyclopedia of environmetrics, (Vol. 1 pp. 45–60). New York, NY, USA: Wiley. DOI: 10.1002/9780470057339.vac022.pub2.

    Google Scholar 

  • Viola, R., Brennan, R. M., Davies, H. V., & Sommerville, L. (2000). L-Ascorbic acid accumulation in berries of Ribes nigrum L. Journal of Horticultural Science & Biotechnology, 75, 409–412.

    Article  CAS  Google Scholar 

  • Wang, J., Leung, D., & Chow, W. (2010). Applications of LC/ESI-MS/MS and UHPLC QqTOF MS for the determination of 148 pesticides in berries. Journal of Agriculture & Food Chemistry, 58, 5904–5925. DOI: 10.1021/jf902747t.

    Article  CAS  Google Scholar 

  • Wołejko, E., Łozowicka, B., & Kaczyński, P. (2014). Pesticide residues in berries fruits and juices and the potential risk for consumers. Desalination & Water Treatment, 52, 19–21. DOI: 10.1080/19443994.2014.883793.

    Google Scholar 

  • Yang, X., Zhang, H., Liu, Y., Wang, J., Zhang, Y. C., Dong, A. J., Zhao, H. T., Sun, C. H., & Cui, J. (2011). Multiresidue method for determination of 88 pesticides in berry fruits using solid-phase extraction and gas chromatography-mass spectrometry: Determination of 88 pesticides in berries using SPE and GC—MS. Food Chemistry, 127, 855–865. DOI: 10.1016/j.foodchem.2011.01.024.

    Article  CAS  Google Scholar 

  • Zhao, L. W., Ge, J., Liu, F. M., & Jiang, N. W. (2014). Effects of storage and processing on residue levels of chlorpyrifos in soybeans. Food Chemistry, 150, 182–186. DOI: 10.1016/j.foodchem.2013.10.124.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Jankowska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lozowicka, B., Jankowska, M. & Kaczynski, P. Behaviour of selected pesticide residues in blackcurrants (Ribes nigrum) during technological processing monitored by liquid-chromatography tandem mass spectrometry. Chem. Pap. 70, 545–555 (2016). https://doi.org/10.1515/chempap-2015-0244

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0244

Keywords

Navigation