Skip to main content
Log in

A novel intramolecular reversible reaction between the hydroxyl group and isobutenylene chain in a cyclophane-type macrocycle

  • Short Communication
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A novel Hg2+ ion induced reversible ring contraction was achieved employing the intramolecular reaction of isobutylene with an aromatic hydroxyl group of cyclophane; reversibility of the reaction was facilitated by excess addition of NaBH4 which also resulted in complexation. The ring contraction and expansion was monitored by UV-VIS absorption, and by fluorescence and 1H NMR spectra. Switchable fluorescence behavior (on—off—on) was observed when the ring-size was tuned from a 19-membered ring to an 18-membered and vice versa. This fine tuning has the potential to be applied in the construction of new supramolecular devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Boñaga, L. V. R., Zhang, H. C., Moretto, A. F., Ye, H., Gauthier, D. A., Li, J., Leo, G. C., & Maryanoff, B. E. (2005). Synthesis of macrocycles via cobalt-mediated [2 + 2 + 2] cycloadditions. Journal of the American Chemical Society, 127, 3473–3485. DOI: 10.1021/ja045001w.

    Article  Google Scholar 

  • Dhammika Bandara, H. M., & Burdette, S. C. (2012). Photoisomerization in different classes of azobenzene. Chemical Society Reviews, 41, 1809–1825. DOI: 10.1039/c1cs15179g.

    Article  Google Scholar 

  • Gatti, F. G., Leigh, D. A., Nepogodiev, S. A., Slawin, A. M. Z., Teat, S. J., & Wong, J. K. Y. (2001). Stiff and sticky in the right places: The dramatic influence of preorganizing guest binding sites on the hydrogen bond-directed assembly of rotaxanes. Journal of the American Chemical Society, 123, 5983–5989. DOI: 10.1021/ja001697r.

    Article  CAS  Google Scholar 

  • Gong, W. T., Hiratani, K., Oba, T., & Ito, S. (2007). A convenient and efficient route for the synthesis of amidecrownophanes via 1: 1 macrocyclization of di(acid chloride) with diamine derivatives. Tetrahedron Letters, 48, 3073–3076. DOI: 10.1016/j.tetlet.2007.02.097.

    Article  CAS  Google Scholar 

  • Gong, W. T., Harigae, J., Seo, J., Lee, S. S., & Hiratani, K. (2008). Controllable synthesis, structures of amidecrownophane-type macrocycles and their binding ability toward anions. Tetrahedron Letters, 49, 2268–2271. DOI: 10.1016/j.tetlet.2008.02.019.

    Article  CAS  Google Scholar 

  • Gong, W. T., Gao, B., Zhao, J. Z., & Ning, G. L. (2013). Rational design of a reusable chemodosimeter for the selective detection of Hg2+. Journal of Materials Chemistry A, 1, 5501–5504. DOI: 10.1039/c3ta10412e.

    Article  CAS  Google Scholar 

  • Guerriero, P., Tarnburini, S., & Vigato, P. A. (1995). From mononuclear to polynuclear macrocyclic or macroacyclic complexes. Coordination Chemistry Reviews, 139, 17–243. DOI: 10.1016/0010-8545(93)01105-7.

    Article  CAS  Google Scholar 

  • Hiratani, K., Suga, J. I., Nagawa, Y., Houjou, H., Tokuhisa, H., Numata, M., & Watanabe, K. (2002). A new synthetic method for rotaxanes via tandem Claisen rearrangement, diesterification and aminolysis. Tetrahedron Letters, 43, 5747–5750. DOI: 10.1016/s0040-4039(02)01201-7.

    Article  CAS  Google Scholar 

  • Hiratani, K., Kaneyama, M., Nagawa, Y., Koyama, E., & Kanesato, M. (2004). Synthesis of [1]rotaxane via covalent bond formation and its unique fluorescent response by energy transfer in the presence of lithium ion. Journal of the American Chemical Society, 126, 13568–13569. DOI: 10.1021/ja046929r.

    Article  CAS  Google Scholar 

  • Izatt, R. M., Bradshaw, J. S., Nielsen, S. A., Lamb, J. D., Christensen, J. J., & Sen, D. (1985). Thermodynamic and kinetic data for cation-macrocycle interaction. Chemical Reviews, 85, 271–339. DOI: 10.1021/cr00068a003.

    Article  CAS  Google Scholar 

  • Ji, F. Y., Zhu, L. L., Ma, X., Wang, Q. C., & Tian, H. (2009). A new thermo- and photo-driven [2]rotaxane. Tetrahedron Letters, 50, 597–600. DOI: 10.1016/j.tetlet.2008.11.080.

    Article  CAS  Google Scholar 

  • Kaneda, T., Umeda, S., Ishizaki, Y., Kuo, H. S., Misumi, S., Kai, Y., Kanehisa, N., & Kasai, N. (1989). Azophenolic acerands: Amine-selective coloration and crystal structure of a piperidinium saltex. Journal of the American Chemical Society, 111, 1881–1883. DOI: 10.1021/ja00187a054.

    Article  CAS  Google Scholar 

  • Lin, Q., Fu, Y. P., Chen, P., Wei, T. B., & Zhang, Y. M. (2013). Colorimetric chemosensors designed to provide high sensitivity for Hg2+ in aqueous solutions. Dyes and Pigments, 96, 1–6. DOI: 10.1016/j.dyepig.2012.06.023.

    Article  CAS  Google Scholar 

  • Pellico, D., Gómez-Gallego, M., Escudero, R., Ramírez-López, P., Oliván, M., & Sierra, M. A. (2011). C-Branched chiral (racemic) macrocyclic amino acids: Structure of their Ni(II), Zn(II) and Cu(II) complexes. Dalton Transactions, 40, 9145–9153. DOI: 10.1039/c1dt10539f.

    Article  CAS  Google Scholar 

  • Seo, J., Lee, S. S., Gong, W. T., & Hiratani, K. (2008). Novel sulfur-containing amidecrownophanes: Synthesis via tandem Claisen rearrangement and an unpredicted mercuration. Tetrahedron Letters, 49, 3770–3774. DOI: 10.1016/j.tetlet.2008.04.013.

    Article  CAS  Google Scholar 

  • Shinkai, S., Nakaji, T., Nishida, Y., Ogawa, T., & Manabe, O. (1980). Photoresponsive crown ethers. 1. cis-trans isomerism of azobenzene as a tool to enforce conformational changes of crown ethers and polymers. Journal of the American Chemical Society, 102, 5860–5865. DOI: 10.1021/ja00538a026.

    Article  CAS  Google Scholar 

  • Takaishi, K., Kawamoto, M., Tsubaki, K., Furuyama, T., Muranaka, A., & Uchiyama, M. (2011). Helical chirality of azobenzenes induced by an intramolecular chiral axis and potential as chiroptical switches. Chemistry — A European Journal, 17, 1778–1782. DOI: 10.1002/chem.201003087.

    Article  CAS  Google Scholar 

  • Umehara, T., Kawai, H., Fujiwara, K., & Suzuki, T. (2008). Entropy- and hydrolytic-driven positional switching of macrocycle between imine- and hydrogen-bonding stations in rotaxane-based molecular shuttles. Journal of the American Chemical Society, 130, 13981–13988. DOI: 10.1021/ja804888b.

    Article  CAS  Google Scholar 

  • Van Doorn, A. R., Schaafstra, R., Bos, M., Harkema, S., Van Eerden, J., Verboom, W., & Reinhoudt, D. N. (1991). Molecular recognition of polar neutral molecules by metallomacrocycles: Synthesis, proton NMR spectroscopy, X-ray structure, electrochemistry and ab initio calculations. The Journal of Organic Chemistry, 56, 6083–6094. DOI: 10.1021/jo00021a024.

    Article  CAS  Google Scholar 

  • Vigato, P. A., & Tamburini, S. (2004). The challenge of cyclic and acyclic Schiff bases and related derivatives. Coordination Chemistry Reviews, 248, 1717–2128. DOI: 10.1016/j.cct.2003.09.003.

    Article  CAS  Google Scholar 

  • Wei, T. B., Gao, G. Y., Qu, W. J., Shi, B. B., Lin, Q., Yao, H., & Zhang, Y. M. (2014). Selective fluorescent sensor for mercury(II) ion based on an easy to prepare double naphthalene Schiff base. Sensors and Actuators B, 199, 142–147. DOI: 10.1016/j.snb.2014.03.084.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Tao Gong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, L., Gong, WT., Dhinakaran, M.K. et al. A novel intramolecular reversible reaction between the hydroxyl group and isobutenylene chain in a cyclophane-type macrocycle. Chem. Pap. 70, 663–666 (2016). https://doi.org/10.1515/chempap-2015-0241

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0241

Keywords

Navigation