Skip to main content
Log in

Innovative approach to treating waste waters by a membrane capacitive deionisation system

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The application of membrane capacitive deionisation was investigated for treating model water samples and real waste waters from the textile industry. For the pre-treatment of waste waters, nanofiltration was integrated in order to prevent scaling and fouling of membranes and electrodes during membrane capacitive deionisation. Different conditions were applied when treating water samples with membrane capacitive deionisation with the aim of optimising conditions for high desalination efficiency and, consequently, for conductivity reduction. The conductivity of waste waters with high salt concentrations was reduced to the required value, below 1.5 mS cm−1. The desalination rates achieved as much as 95 %, depending on the initial conductivity and the different ions present in the water samples. In addition, chemometric characterisation of the samples was performed in order to determine the existence of significant correlations between the monitored parameters: the presence of various ions (Na+, K+, Ca2+, Mg2+, Cl, Br, F, SO42−, NO3, desalination and water recovery, the duration of each phase and the flow of the solution during each phase. A model for desalination rate prediction was designed using multiple linear regression. It was established that the model values accorded well with the experimental values — the differences between model and experimental values were less than 1 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akbari, A., Remigy, J. C., & Aptel, P. (2002). Treatment of textile dye effluent using a polyamide-based nanofiltration membrane. Chemical Engineering and Processing: Process Intensification, 41, 601–609. DOI: 10.1016/s0255-2701(01)00181-7.

    Article  CAS  Google Scholar 

  • Babu, B. R., Parande, A. K., Raghu, S., & Prem Kumar, T. (2007). Cotton textile processing: Waste generation and effluent treatment. Journal of Cotton Science, 11, 141–153.

    CAS  Google Scholar 

  • Biesheuvel, P. (2009). Thermodynamic cycle analysis for capacitive deionization. Journal of Colloid and Interface Science, 332, 258–264. DOI: 10.1016/j.jcis.2008.12.018.

    Article  CAS  Google Scholar 

  • Broséus, R., Cigana, R., Barbeau, B., Daines-Martinez, C., & Suty, H. (2009). Removal of total dissolved solids, nitrates and ammonium ions from drinking water using charge-barrier capacitive deionisation. Desalination, 249, 217–223. DOI: 10.1016/j.desal.2008.12.048.

    Article  Google Scholar 

  • Dermentzis, K., & Ouzounis, K. (2008). Continuous capacitive deionization—electrodialysis reversal through electrostatic shielding for desalination and deionization of water. Electrochimica Acta, 53, 7123–7130. DOI: 10.1016/j.electacta.2008.05.026.

    Article  CAS  Google Scholar 

  • Isabel, E., & Schafer, A. (2010). Sustainable water for the future: Water recycling, reuse, desalination. Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  • Joarder, M. A. M., Raihan, F., Alam, J. B., & Hasanuzzaman, S. (2008). Regression analysis of ground water quality data of Sunamganj district, Bangladesh. International Journal of Environmental Research, 2, 291–296.

    CAS  Google Scholar 

  • Kim, Y. J., & Choi, J. H. (2010). Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane. Separation and Purification Technology, 71, 70–75. DOI: 10.1016/j.seppur.2009.10.026.

    Article  CAS  Google Scholar 

  • Košmelj, K., & Breskvar Žaucer, L. (2006). Metode za razvrščanje enot v skupine; osnove in primer. Acta Agriculturae Slovenica, 87, 229–310. (in Slovenian)

    Google Scholar 

  • Ledakowicz, S., Solecka, M., & Zylla, R. (2001). Biodegradation, decolourisation and detoxification of textile wastewater enhanced by advanced oxidation processes. Journal of Biotechnology, 89, 175–184. DOI: 10.1016/s0168-1656(01)00296-6.

    Article  CAS  Google Scholar 

  • Li, H. B., Zou, L., Pan, L. K., & Sun, Z. (2010). Using graphene nano-flakes as electrodes to remove ferric ions by capacitive deionization. Separation and Purification Technology, 75, 8–14. DOI: 10.1016/j.seppur.2010.07.003.

    Article  CAS  Google Scholar 

  • Majcen Le Marechal, A., Križanec, B., Vajnhandl, S., & Volmajer Valh, J. (2012). Textile finishing industry as an important source of organic pollutants. In V. T. Puzyn, & A. Mostragg-Szlichtyng (Eds.), Organic pollutants ten years after the Stockholm convention — environmental and analytical update (pp. 30–54). Rijeka, Croatia: InTech.

    Google Scholar 

  • Marmagne, O., & Coste, C. (1996). Color removal from textile plant effluents. American Dyestuff Reporter, 4, 15–27.

    Google Scholar 

  • Massart, D. (1997). Handbook of chemometrics and qualimetrics: Part A. Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  • Meier, P., & Zünd, R. (2000). Statistical methods in analytical chemistry (2nd ed.). New York, NY, USA: Wiley.

    Book  Google Scholar 

  • Meriç, S., Lofrano, G., & Belgiorno, V. (2005). Treatment of reactive dyes and textile finishing wastewater using Fenton’s oxidation for reuse. International Journal of Environment and Pollution, 23, 248–258.

    Article  Google Scholar 

  • Miller, J., & Miller, J. (2005). Statistics and chemometrics for analytical chemistry (5th ed.). Edinburgh, UK: Pearson.

    Google Scholar 

  • Patel, H., & Vashi, R. T. (2010). Treatment of textile wastewater by adsorption and coagulation. E-Journal of Chemistry, 7, 1468–1476.

    Article  CAS  Google Scholar 

  • Perkowski, J., Kos, L., & Ledakowicz, S. (1996). Application of ozone in textile wastewater treatment. Ozone: Science & Engineering: The Journal of the International Ozone Association, 18, 73–85. DOI: 10.1080/01919519608547342.

    Article  CAS  Google Scholar 

  • Pohar, M., Blas, M., & Turk, S. (2004). Comparison of logistic regression and linear discriminant analysis: A simulation study. Metodološki Zvezki, 1, 143–161.

    Google Scholar 

  • Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: A critical rewiev on current treatment technologies with a proposed alternative. Bioresource Technology, 77, 247–255. DOI: 10.1016/s0960-8524(00)00080-8.

    Article  CAS  Google Scholar 

  • Subramani, A., Badruzzaman, M., Oppenheimer, J., & Jacangelo, J. G. (2011). Energy minimization strategies and renewable energy utilization for desalination: A review. Water Research, 45, 1907–1920. DOI: 10.1016/j.watres.2010.12.032.

    Article  CAS  Google Scholar 

  • Van Limpt, B. (2010). Performance relations in capacitive deionization systems. Wageningen, The Netherlands: Wageningen University.

    Google Scholar 

  • Varmuza, K., & Filzmoser, P. (2008). Introduction to multivariate statistical analysis in chemometrics. Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  • Yang, C. M., Choi, W. H., Na, B. K., Cho, B. W., & Cho, W. I. (2005). Capacitive deionization of NaCl solution with carbon aerogel—silicagel composite electrodes. Desalination, 174, 125–133. DOI: 10.1016/j.desal.2004.09.006.

    Article  CAS  Google Scholar 

  • Yang, J., Zou, L., Song, H. H., & Hao, Z. P. (2011). Development of novel MnO2/nanoporous carbon composite electrodes in capacitive deionization technology. Desalination, 276, 199–206. DOI: 10.1016/j.desal.2011.03.044.

    Article  CAS  Google Scholar 

  • Zupan, J. (2009). Kemometrija in obdelava eksperimentalnih podatkov (1st ed.). Ljubljana, Slovenia: Inštitut Nove Revije, Zavod za Humanistiko in Kemijski Inštitut Ljubljana. (in Slovenian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miša Biro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biro, M., Vončina, D.B. Innovative approach to treating waste waters by a membrane capacitive deionisation system. Chem. Pap. 70, 576–584 (2016). https://doi.org/10.1515/chempap-2015-0239

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0239

Keywords

Navigation