Skip to main content
Log in

Synthesis of new 5-bromo derivatives of indole and spiroindole phytoalexins

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Electrophilic aromatic substitution is one of the most thoroughly studied reactions in organic chemistry. In the present paper, the 5-brominated spirobrassinol methyl ethers VII, VIII were obtained by electrophilic substitution of the aromatic core of indoline at the C-5 position in the presence of various brominating agents. The same products were also prepared from 5-bromoindole (IX) following the sequence for the synthesis 1-methoxyspirobrassinol methyl ether (V) from indoline. In addition, the new related 5-bromospiroindoline derivatives XX–XXIII were synthesised and their biological activity on human tumour cell lines was examined. The presence of bromine in the indole or indoline skeleton at the C-5 position resulted in the partial increase in anticancer activity on leukaemia cell lines (Jurkat, CEM). The structures of the newly prepared products were determined by 1H and 13C NMR spectroscopy, including HSQC, HMBC, COSY, NOESY and DEPT measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acheson, R. M., Hunt, P. G., Littelwood, D. M., Murrer, B. A., & Rosenberg, H. E. (1978). The synthesis, reactions, and spectra of 1-acetoxy-, 1-hydroxy-and 1-methoxy-indoles. Journal of the Chemical Society, Perkin Transactions 1, 1978, 1117–1125. DOI: 10.1039/p19780001117.

    Article  Google Scholar 

  • Banerjee, T., DuHadaway, J. B., Gaspari, P., Sutanto-Ward, E., Munn, D. H., Mellor, A. L., Malachowski, W. P., Prendergast, G. C., & Muller, A. J. (2008). A key in vivo antitumor mechanism of action of natural product-based brassinins is inhibition of indoleamine 2,3-dioxygenase. Oncogene, 27, 2851–2857. DOI: 10.1038/sj.onc.1210939.

    Article  CAS  Google Scholar 

  • Boyd, E. M., & Sperry, J. (2011). Synthesis of the selective neuronal nitric oxide synthase (nNOS) inhibitor 5,6-dibromo-2’-demethylaplysinopsin. Synlett, 6, 826–830. DOI: 10.1055/s-0030-1259913.

    Google Scholar 

  • Chandra, T., & Brown, K. L. (2005). Direct glycosylation: Synthesis of α-indoline ribonucleosides. Tetrahedron Letters, 46, 2071–2074. DOI: 10.1016/j.tetlet.2005.01.164.

    Article  CAS  Google Scholar 

  • Hanley, A. B., Parsley, K. R., Lewis, J. A., & Fenwick, G. R. (1990). Chemistry of indole glucosinolates: Intermediacy of indol-3-ylmethyl isothiocyanates in the enzymic hydrolysis of indole glucosinolates. Journal of the Chemical Society, Perkin Transactions 1, 1990, 2273–2276. DOI: 10.1039/p19900002273.

    Article  Google Scholar 

  • Ishiyama, H., Yoshizawa, K., & Kobayashi, J. (2012). Enantioselective total synthesis of eudistomidins G, H and I. Tetrahedron, 68, 6186–6192. DOI: 10.1016/j.tet.2012.05.071.

    Article  CAS  Google Scholar 

  • Kutschy, P., Dzurilla, M., Takasugi, M., Török, M., Achbergerova, I., Homzová, R., & Rácová, M. (1998). New syntheses of indole phytoalexins and related compounds. Tetrahedron, 54, 3549–3566. DOI: 10.1016/s0040-4020(98)00088-x.

    Article  CAS  Google Scholar 

  • Kutschy, P., Suchý, M., Monde, K., Harada, N., Marušková, R., Čurillova, Z., Dzurilla, M., Miklošová, M., Mezencev, R., & Mojžiš, J. (2002). Spirocyclization strategy toward indole phytoalexins. The first synthesis of (±)-1-methoxyspirobrassinin, (±)-1-methoxyspirobrassinol and (±)-1-methoxyspirobrassinol methyl ether. Tetrahedron Letters, 43, 9489–9492. DOI: 10.1016/s0040-4039(02)02452-8.

    Article  CAS  Google Scholar 

  • Kutschy, P., Salayová, A., Čurillová, Z., Kožár, T., Mezencev, R., Mojžiš, J., Pilátová, M., Balentová, E., Pazdera, P., Sabol, M., & Zburová, M. (2009). 2-(Substituted phenyl) amino analogs of 1-methoxyspirobrassinol methyl ether: Synthesis and anticancer activity. Bioorganic & Medicinal Chemistry, 17, 3698–3712. DOI: 10.1016/j.bmc.2009.03.064.

    Article  CAS  Google Scholar 

  • Monde, K., Taniguchi, T., Miura, N., Kutschy, P., Čurillová, Z., Pilátová, M., & Mojžiš, J. (2005). Chiral cruciferous phytoalexins: Preparation, absolute configuration and biological activity. Bioorganic & Medicinal Chemistry, 13, 5206–5212. DOI: 10.1016/j.bmc.2005.06.001.

    Article  CAS  Google Scholar 

  • Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55–63. DOI: 10.1016/0022-1759(83)90303-4.

    Article  CAS  Google Scholar 

  • Pauletti, P. M., Cintra, L. S., Braguine, C. G., da Silva Filho, A. A., e Silva, M. L. A., Cunha, W. R., & Januário, A. H. (2010). Halogenated indole alkaloids from marine invertebrates. Marine Drugs, 8, 1526–1549. DOI: 10.3390/md8051526.

    Article  CAS  Google Scholar 

  • Pedras, M. S. C., & Zaharia, I. L. (2000). Sinalbins A and B, phytoalexins from Sinapis alba: Elicitation, isolation and synthesis. Phytochemistry, 55, 213–216. DOI: 10.1016/s0031-9422(00)00277-6.

    Article  CAS  Google Scholar 

  • Pedras, M. S. C., Suchý, M., & Ahiahonu, P. W. K. (2006). Unprecedented chemical structure and biomimetic synthesis of erucalexin, a phytoalexin from the wild crucifer Erucastrum gallicum. Organic & Biomolecular Chemistry, 4, 691–701. DOI: 10.1039/b515331j.

    Article  CAS  Google Scholar 

  • Pedras, M. S. C., Yaya, E. E., & Glawischnig, E. (2011). The phytoalexins from cultivated and wild crucifers: Chemistry and biology. Natural Product Reports, 8, 1381–1405. DOI: 10.1039/c1np00020a.

    Article  Google Scholar 

  • Somei, M., & Kawasaki, T. (1989). A new and simple synthesis of 1-hydroxyindole derivatives. Heterocycles, 29, 1251–1254. DOI: 10.3987/com-89-5037.

    Article  CAS  Google Scholar 

  • Wang, W., Xiong, C. Y., Yang, J. Q., & Hruby, V. J. (2001). Practical, asymmetric synthesis of aromatic-substituted bulky and hydrophobic tryptophan derivatives. Tetrahedron Letters, 42, 7717–7719. DOI: 10.1016/s0040-4039(01)01626-4.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Očenášová.

Additional information

Dr. Peter Kutschy passed away on 11 June 2012.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Očenášová, L., Kutschy, P., Gonda, J. et al. Synthesis of new 5-bromo derivatives of indole and spiroindole phytoalexins. Chem. Pap. 70, 635–648 (2016). https://doi.org/10.1515/chempap-2015-0230

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0230

Keywords

Navigation