Skip to main content
Log in

Solubility enhancement of phenanthrene using novel chelating surfactant

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A novel chelating surfactant denoted as sodium N-lauroyl ethylenediamine triacetate (N-LED3A) with both surface activity and chelation functions was studied for phenanthrene (PHE) solubilisation ability. The critical micelle concentration (CMC) of N-LED3A was measured, and the effects of the initial N-LED3A concentration, temperature, pH value and coexisting ions (Na+, Ca2+ and Cu2+) on PHE solubilisation by N-LED3A were investigated. The results demonstrated that PHE solubility was efficiently enhanced by N-LED3A, especially with N-LED3A concentrations above the CMC, which was 707 mg L−1 when measured at 25°C. The temperature influenced the apparent PHE solubility slightly and the apparent solubility of PHE was significantly affected by the pH. Na and Ca were shown to increase the PHE solubility, while Ca exhibited a better promoting ability than Na+. A suitable quantity of Cu could significantly enhance the solubilisation capacities of N-LED3A at pH 5. The mechanism of the interaction between Cu+ and N-LED3A was further confirmed by Fourier transform infrared spectroscopy (FTIR). These results reveal that Cu2+ can be chelated with N-LED3A to form a chelate complex. The results implied that N-LED3A had the potential to remediate soils contaminated by both organics and heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amaraneni, S. R. (2006). Distribution of pesticides, PAHs and heavy metals in prawn ponds near Kolleru lake wetland, India. Environment International, 32, 294–302. DOI: 10.1016/j.envint.2005.06.001.

    Article  CAS  Google Scholar 

  • An, C. J., Huang, G. H., Wei, J., & Yu, H. (2011). Effect of shortchain organic acids on the enhanced desorption of phenanthrene by rhamnolipid biosurfactant in soil–water environment. Water Research, 45, 5501–5510. DOI: 10.1016/j.watres.2011.08.011.

    Article  CAS  Google Scholar 

  • Bandala, E. R., Aguilar, F., & Torres, L. G. (2010). Surfactant-enhanced soil washing for the remediation of sites contaminated with pesticides. Land Contamination & Reclamation, 18, 151–159. DOI: 10.2462/09670513.991.

    Article  Google Scholar 

  • Barona, A., Aranguiz, I., & Elías, A. (2001). Metal associations in soils before and after EDTA extractive decontamination: implications for the effectiveness of further cleanup procedures. Environmental Pollution, 113, 79–85. DOI: 10.1016/s0269-7491(00)00158-5.

    Article  CAS  Google Scholar 

  • Chang, Q. (2013). Colloid and interface chemistry for water quality control. Beijing, China: Chemical Industry Press. (in Chinese)

    Google Scholar 

  • Conte, P., Agretto, A., Spaccini, R., & Piccolo, A. (2005). Soil remediation: humic acids as natural surfactants in the washings of highly contaminated soils. Environmental Pollution, 135, 515–522. DOI: 10.1016/j.envpol.2004.10.006.

    Article  CAS  Google Scholar 

  • Dermont, G., Bergeron, M., Mercier, G., & Richer-Laflèche, M. (2008). Soil washing for metal removal: A review of physical/chemical technologies and field applications. Journal of Hazardous Materials, 152, 1–31. DOI: 10.1016/j.jhazmat. 2007.10.043.

    Article  CAS  Google Scholar 

  • Ehsan, S., Prasher, S. O., & Marshall, W. D. (2006a). A washing procedure to mobilize mixed contaminants from soil: I. Poly-chlorinated biphenyl compounds. Journal of Environmental Quality, 35, 2146–2153. DOI: 10.2134/jeq2005.0474.

    Article  CAS  Google Scholar 

  • Ehsan, S., Prasher, S. O., & Marshall, W. D. (2006b). A washing procedure to mobilize mixed contaminants from soil: II. Heavy metals. Journal of Environmental Quality, 35, 2084–2091. DOI: 10.2134/jeq2005.0475.

    Article  CAS  Google Scholar 

  • Evangelou, M. W. H., Ebel, M., & Schaeffer, A. (2007). Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere, 68, 989–1003. DOI: 10.1016/j.chemosphere.2007.01. 062.

    Article  CAS  Google Scholar 

  • Finžgar, N., & Leštan, D. (2007). Multistep leaching of Pb and Zn contaminated soils with EDTA. Chemosphere, 66, 824–832. DOI: 10.1016/j.chemosphere.2006.06.029.

    Article  Google Scholar 

  • Khalladi, R., Benhabiles, O., Bentahar, F., & Moulai-Mostefa, N. (2009). Surfactant remediation of diesel fuel polluted soil. Journal of Hazardous Materials, 164, 1179–1184. DOI: 10.1016/j.jhazmat.2008.09.024.

    Article  CAS  Google Scholar 

  • Kile, D. E., & Chiou, C. T. (1989). Water solubility enhancements of DDT and trichlorobenzene by some surfactants below and above the critical micelle concentration. Environmental Science & Technology, 23, 832–838. DOI: 10.1021/es00065a012.

    Article  CAS  Google Scholar 

  • Leštan, D., Luo, C. L., & Li, X. D. (2008). The use of chelating agents in the remediation of metal-contaminated soils: A review. Environmental Pollution, 153, 3–13. DOI: 10.1016/j.envpol.2007.11.015.

    Article  Google Scholar 

  • Li, F., Guo, S., & Hartog, N. (2012). Electrokinetics-enhanced biodegradation of heavy polycyclic aromatic hydrocarbons in soil around iron and steel industries. Electrochimica Acta, 85, 228–234. DOI: 10.1016/j.electacta.2012.08.055.

    Article  CAS  Google Scholar 

  • Maturi, K., Khodadoust, A. P., & Reddy, K. R. (2008). Comparison of extractants for removal of lead, zinc, and phenan-threne from manufactured gas plant field soil. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 12, 230–238. DOI: 10.1061/(asce)1090-025x(2008) 12:4(230).

    Article  CAS  Google Scholar 

  • McAllister, L. K., Van Rooij, B., & Kagan, R. A. (2010). Reorienting regulation: pollution enforcement in industrializing countries. Law & Policy, 32, 1–13. DOI: 10.1111/j.1467-9930.2009.00314.x.

    Google Scholar 

  • Morkin, M., Devlin, J. F., Barker, J. F., & Butler, B. J. (2000). In situ sequential treatment of a mixed contaminant plume. Journal of Contaminant Hydrology, 45, 283–302. DOI: 10.1016/s0169-7722(00)00111-x.

    Article  CAS  Google Scholar 

  • Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Surfactant-enhanced remediation of contaminated soil: a review. Engineering Geology, 60, 371–380. DOI: 10.1016/s0013-7952(00)00117-4.

    Article  Google Scholar 

  • Parker, B. A., & Crudden, J. J. (1996). The commercial synthesis and characterization of novel multifunctional surfactant chelates. In J. Sanchez-Leal (Ed.), 4th World surfactant congress (Series: Special publications, Book 187, Vol. 1, p. 446–460). Cambridge, UK: Royal Society of Chemistry.

    CAS  Google Scholar 

  • Pastewski, S., Hallmann, E., & Medrzycka, K. (2006). Physicochemical aspects of the application of surfactants and bio-surfactants in soil remediation. Environmental Engineering Science, 23, 579–588. DOI: 10.1089/ees.2006.23.579.

    Article  CAS  Google Scholar 

  • Pennell, K. D., Abriola, L. M., & Weber, W. J., Jr. (1993). Surfactant-enhanced solubilization of residual dodecane in soil columns. 1. Experimental investigation. Environmental Science & Technology, 27, 2332–2340. DOI: 10.1021/es00048 a005.

    Article  CAS  Google Scholar 

  • Peters, R. W. (1999). Chelant extraction of heavy metals from contaminated soils. Journal of Hazardous Materials, 66, 151–210. DOI: 10.1016/s0304-3894(99)00010-2.

    Article  CAS  Google Scholar 

  • Pretsch, E., Bühlmann, P., & Badertscher, M. (2009). Structure determination of organic compounds: Tables of spectral data (4th ed.). Berlin, Germany: Springer. DOI: 10.1007/978-3-540-93810-1.

    Google Scholar 

  • Qiu, R., Zou, Z., Zhao, Z., Zhang, W., Zhang, T., Dong, H., & Wei, X. (2010). Removal of trace and major metals by soil washing with Na2EDTA and oxalate. Journal of Soils and Sediments, 10, 45–53. DOI: 10.1007/s11368-009-0083-z.

    Article  CAS  Google Scholar 

  • Silverstein, R. M., Bassler, G. C., & Morrill, T. C. (1991). Spec-trometric identification of organic compounds (5th ed.). New York, NY, USA: Wiley.

    Google Scholar 

  • Thavamani, P., Megharaj, M., & Naidu, R. (2012). Multivariate analysis of mixed contaminants (PAHs and heavy metals) at manufactured gas plant site soils. Environmental Monitoring and Assessment, 184, 3875–3885. DOI: 10.1007/s10661-011-2230-4.

    Article  CAS  Google Scholar 

  • Ullmann, A., Brauner, N., Vazana, S., Katz, Z., Goikhman, R., Seemann, B., Marom, H., & Gozin, M. (2013). New biodegradable organic-soluble chelating agents for simultaneous removal of heavy metals and organic pollutants from contaminated media. Journal of Hazardous Materials, 260, 676–688. DOI: 10.1016/j.jhazmat.2013.06.027.

    Article  CAS  Google Scholar 

  • Wang, X., Zhao, J., Yao, X., & Chen, W. (2004). Synthesis and properties of N-hexadecyl ethylenediamine triacetic acid. Journal of Colloid and Interface Science, 279, 548–551. DOI: 10.1016/j.jcis.2004.06.077.

    Article  CAS  Google Scholar 

  • Wang, J., Yang, X. S., & Li, G. S. (2009). Synthesis and application of functional surfactants. Beijing, China: Chemical Industry Press.

    Google Scholar 

  • Wen, Y., & Marshall, W. D. (2011). Simultaneous mobilization of trace elements and polycyclic aromatic hydrocarbon (PHA) compounds from soil with a nonionic surfactant and [S,S]-EDDS in admixture: Metals. Journal of Hazardous Materials, 197, 361–368. DOI: 10.1016/j.jhazmat.2011.09.097.

    Article  CAS  Google Scholar 

  • Wu, G., Kang, H., Zhang, X., Shao, H., Chu, L., & Ruan, C. (2010). A critical review on the bio-removal of hazardous heavy metals from contaminated soils: Issues, progress, eco-environmental concerns and opportunities. Journal of Hazardous Materials, 174, 1–8. DOI: 10.1016/j.jhazmat.2009.09. 113.

    Article  CAS  Google Scholar 

  • Xie, J. X., Chang, J. B., & Wang, X. M. (2001). Applications of infrared spectra in organic chemistry and pharmaceutical chemistry. Beijing, China: Science Press.

    Google Scholar 

  • Yuan, Z., & VanBriesen, J. M. (2006). The formation of intermediates in EDTA and NTA biodegradation. Environmental Engineering Science, 23, 533–544. DOI: 10.1089/ees.2006.23. 533.

    Article  CAS  Google Scholar 

  • Yuan, S., Wu, X., Wan, J., Long, H., Lu, X., Wu, X., & Chen, J. (2010). Enhanced washing of HCB and Zn from aged sediments by TX-100 and EDTA mixed solutions. Geoderma, 156, 119–125. DOI: 10.1016/j.geoderma.2010.02.006.

    Article  CAS  Google Scholar 

  • Zhang, W., Tsang, D. C. W., & Lo, I. M. C. (2007). Removal of Pb and MDF from contaminated soils by EDTA- and SDS-enhanced washing. Chemosphere, 66, 2025–2034. DOI: 10.1016/j.chemosphere.2006.10.017.

    Article  CAS  Google Scholar 

  • Zhang, W., Tsang, D. C. W., & Lo. I. M. C. (2008). Removal of Pb by EDTA-washing in the presence of hydrophobic organic contaminants or anionic surfactant. Journal of Hazardous Materials, 155, 433–439. DOI: 10.1016/j.jhazmat.2007.11. 084.

    Article  CAS  Google Scholar 

  • Zhang, T., Wu, Y. X., Huang, X. F., Liu, J. M., Xia, B., Zhang, W. H., & Qiu, R. L. (2012). Simultaneous extraction of Cr(VI) and Cu(II) from humic acid with new synthesized EDTA derivatives. Chemosphere, 88, 730–735. DOI: 10.1016/j.chemosphere.2012.04.003.

    Article  CAS  Google Scholar 

  • Zhang, T., Liu, J. M., Huang, X. F., Xia, B., Su, C. Y., Luo, G. F., Xu, Y. W., Wu, Y. X., Mao, Z. W., & Qiu, R. L. (2013). Chelant extraction of heavy metals from contaminated soils using new selective EDTA derivatives. Journal of Hazardous Materials, 262, 464–471. DOI: 10.1016/j.jhazmat.2013.08.069.

    Article  CAS  Google Scholar 

  • Zhang, T., Wei, H., Yang, X. H., Xia, B., Liu, J. M., Su, C. Y., & Qiu, R. L. (2014). Influence of the selective EDTA derivative phenyldiaminetetraacetic acid on the speciation and extraction of heavy metals from a contaminated soil. Chemosphere, 109, 1–6. DOI: 10.1016/j.chemosphere.2014.02.039.

    Article  Google Scholar 

  • Zhao, G. X., & Zhu, S. Y. (2003). Principles of surfactant action. Beijing, China: China Light Industry Press.

    Google Scholar 

  • Zhao, B. W. (2004). Solubilization and bioavailability enhancements of hydrophobic organic compounds by surface active agents. Ph.D. thesis, Zhejiang University, Hangzhou, China.

    Google Scholar 

  • Zhao, B., & Jiang, B. (2011). Aqueous dissolution of phenan-threne from loess soil using Triton X-100 and sodium dode-cylbenzene sulfonate. Asian Journal of Chemistry, 23, 3859–3864.

    CAS  Google Scholar 

  • Zhong, J., Zhao, B., Zhu, K., Ma, F., & Ran, J. (2011). Solubi-lization kinetics of phenanthrene by surfactants and relation between weight solubilization ratio (WSR) and hydrophile-lipophile balance value (HLB) of surfactants. Environmental Chemistry, 30, 1737–1742. (in Chinese)

    Google Scholar 

  • Zhu, L., & Feng, S. (2003). Synergistic solubilization of poly-cyclic aromatic hydrocarbons by mixed anionic–nonionic surfactants. Chemosphere, 53, 459–467. DOI: 10.1016/s0045-6535(03)00541-1.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-Wei Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diao, JR., Zhao, BW., Ma, FF. et al. Solubility enhancement of phenanthrene using novel chelating surfactant. Chem. Pap. 70, 375–383 (2016). https://doi.org/10.1515/chempap-2015-0199

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0199

Keywords

Navigation