Skip to main content
Log in

Synthesis and evaluation of a novel hydrophobically associating polymer based on acrylamide for enhanced oil recovery

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A novel polymerizable hydrophobic monomer 1-(4-dodecyloxy-phenyl)-propenone (DPP) was synthesized by esterification, Frise rearrangement and Williamson etherification; then, the obtained DPP was copolymerized with 2-(acrylamido)-dodecanesulfonic acid (AMC12S) and acrylamide (AM) initiated by a redox initiation system in an aqueous medium to enhance oil recovery (EOR). AM/AMC12S/DPP (PADP) was characterized by FT-IR 1H NMR spectroscopy, environmental scanning electron microscopy (ESEM), DSC-TG, fluorescent probe, core flood test, etc. Results of ESEM and fluorescent probe indicate that hydrophobic microdomains and associating three-dimensional networks were formed in the aqueous solution of PADP. Results of DSC-TG demonstrated that long carbon chains, aromatic groups and sulfonic groups were incorporated into the PADP polymer, which can lead to a significant increase of the rigidity of molecular chains. Performance evaluation of experiments showed superior properties in regard to temperature-tolerance, shear-tolerance and salt-tolerance. In the Sandpack Flooding Test, PADP brine solution showed a significant increase in EOR at 65°C because of its high thickening capability. All these features indicate that PADP has a potential application in EOR at harsh conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bera, A., Kumar, T., Ojha, K., & Mandal, A. (2013). Adsorption of surfactants on sand surface in enhanced oil recovery: Isotherms, kinetics and thermodynamic studies. Applied Surface Science, 284, 87–99. DOI: 10.1016/j.apsusc.2013.07.029.

    Article  CAS  Google Scholar 

  • Bera, A., Kumar, T., Ojha, K., & Mandal, A. (2014a). Screening of microemulsion properties for application in enhanced oil recovery. Fuel, 121, 198–207. DOI: 10.1016/j.fuel.2013.12.051.

    Article  CAS  Google Scholar 

  • Bera, A., Mandal, A., & Kumar, T. (2014b). Physicochemical characterization of anionic and cationic microemulsions: Water solubilization, particle size distribution, surface tension and structural parameters. Journal of Chemical & Engineering Data, 59, 2490–2498. DOI: 10.1021/je500274r.

    Article  CAS  Google Scholar 

  • Casarano, R., Bentini, R., Bueno, V. B., Iacovella, T., Monteiro, F. B. F., Iha, F. A. S., Campa, A., Petri, D. F. S., Jaffe, M., & Catalani, L. H. (2009). Enhanced fibroblast adhesion and proliferation on electrospun fibers obtained from poly(isosorbide succinate-b-L-lactide) block copolymers. Polymer, 50, 6218–6227. DOI: 10.1016/j.polymer.2009.10.048.

    Article  CAS  Google Scholar 

  • Deng, Q. H., Li, H. P., Li, Y., Cao, X. L., Yang, Y., & Song, X. W. (2014). Rheological properties and salt resistance of a hydrophobically associating polyacrylamide. Australian Journal of Chemistry, 67, 1396–1402. DOI: 10.1071/ch14204.

    Article  CAS  Google Scholar 

  • Eastoe, J., Paul, A., Nave, S., Steytler, D. C., Robinson, B. H., Rumsey, E., Thorpe, M., & Heenan, R. K. (2001). Micellization of hydrocarbon surfactants in supercritical carbon dioxide. Journal of the American Chemical Society, 123, 988–989. DOI: 10.1021/ja005795o.

    Article  CAS  Google Scholar 

  • Friedrich, T., Tieke, B., Stadler, F. J., & Bailly, C. (2011). Copolymer hydrogels of acrylic acid and a nonionic surfmer: pH-induced switching of transparency and volume and improved mechanical stability. Langmuir, 27, 2997–3005. DOI: 10.1021/la104585k.

    Article  CAS  Google Scholar 

  • Gao, B. J., Yu, Y. M., & Jiang, L. D. (2007a). Studies on micellar behavior of anionic and surface-active monomers with acrylamide type in aqueous solutions. Colloids and Surfaces A, 293, 210–216. DOI: 10.1016/j.colsurfa.2006.07.034.

    Article  CAS  Google Scholar 

  • Gao, B. J., Jiang, L. D., & Liu, K. K. (2007b). Microstructure and association property of hydrophobically modified polyacrylamide of a new family. European Polymer Journal, 43, 4530–4540. DOI: 10.1016/j.eurpolymj.2007.03.049.

    Article  CAS  Google Scholar 

  • Hourdet, D., Ducouret, G., Varghese, S., Badiger, M. V., & Wadgaonkar, P. P. (2013). Thermodynamic behavior of hydrophobically modified polyacrylamide containing random distribution of hydrophobes: Experimental and theoretical investigations. Polymer, 54, 2676–2689. DOI: 10.1016/j.polymer.2013.03.039.

    Article  CAS  Google Scholar 

  • Jiménez-Regalado, E., Selb, J., & Candau, F. (2000). Effect of surfactant on the viscoelastic behavior of semidilute solutions of multisticher associating polyacrylamides. Langmuir, 16, 8611–8621. DOI: 10.1021/la000168y.

    Article  Google Scholar 

  • Koromilas, N. D., Lainioti, G. C., Oikonomou, E. K., Bokias, G., & Kallitsis, J. K. (2014). Synthesis and self-association in dilute aqueous solution of hydrophobically modified polycations and polyampholytes based on 4-vinylbenzyl chloride. European Polymer Journal, 54, 39–51. DOI: 10.1016/j.eurpolymj.2014.02.009.

    Article  CAS  Google Scholar 

  • Ma, L. H., Guo, Y. J., Feng, R. S., Xiang, P. P., & Li, C. H. (2014). Synthesis and micellar behaviors of an anionic polymerizable surfactant. Journal of the Chinese Chemical Society, 61, 583–588. DOI: 10.1002/jccs.201300372.

    Article  CAS  Google Scholar 

  • Mandal, A., Samanta, A., Bera, A., & Ojha, K. (2010). Characterization of oil-water emulsion and its use in enhanced oil recovery. Industrial & Engineering Chemistry Research, 49, 12756–12761. DOI: 10.1021/ie101589x.

    Article  CAS  Google Scholar 

  • Morales, D. V., & Rivas, B. L. (2015). Poly(2-acrylamidoglycolic acid-co-2-acrylamide-2-methyl-1-propane sulfonic acid) and poly(2-acrylamidoglycolic acid-co-4-styrene sodium sulfonate): synthesis, characterization, and properties for use in the removal of Cd(II), Hg(II), Zn(II) and Pb(II). Polymer Bulletin, 72, 339–352. DOI: 10.1007/s00289-014-1277-0.

    Article  CAS  Google Scholar 

  • Nishida, I., Okaue, Y., & Yokoyama, T. (2010). Effects of adsorption conformation on the dispersion of aluminum hydroxide particles by multifunctional polyelectrolytes. Langmuir, 26, 11663–11669. DOI: 10.1021/la1008522.

    Article  CAS  Google Scholar 

  • Patterson, J. P., Kelley, E. G., Murphy, R. P., Moughton, A. O., Robin, M. P., Lu, A., Colombani, O., Chassenieux, C., Cheung, D., Sullivan, M. O., Epps, T. H., & O’Reilly, R. K. (2013). Structural characterization of amphiphilic homopolymer micelles using light scattering, SANS and Cryo-TEM. Macromolecules, 46, 6319–6325. DOI: 10.1021/ma4007544.

    Article  CAS  Google Scholar 

  • Pu, W. F., Liu, R., Wang, K. Y., Li, K. X., Yan, Z. P., Li, B., & Zhao, L. (2015). Water-soluble core-shell hyperbranched polymers for enhanced oil recovery. Industrial & Engineering Chemistry Research, 54, 798–807. DOI: 10.1021/ie5039693.

    Article  CAS  Google Scholar 

  • Roy, A., Comesse, S., Grisel, M., Hucher, N., Souguir, Z., & Renou, F. (2014). Hydrophobically modified xanthan: An amphiphilic but not associative polymer. Biomacromolecules, 15, 1160–1170. DOI: 10.1021/bm4017034.

    Article  CAS  Google Scholar 

  • Samanta, A., Bera, A., Ojha, K., & Mandal, A. (2010). Effects of alkali, salts and surfactant on rheological behavior of partially hydrolyzed polyacrylamide solutions. Journal of Chemical & Engineering Data, 55, 4315–4322. DOI: 10.1021/je100458a.

    Article  CAS  Google Scholar 

  • Samanta, A., Ojha, K., & Mandal, A. (2011). Interactions between acidic crude oil and alkali and their effects on enhanced oil recovery. Energy & Fuels, 25, 1642–1649. DOI: 10.1021/ef101729f.

    Article  CAS  Google Scholar 

  • Siano, D. B., Bock, J., Myer, P., & Valint, P. L. (1989). Fluorescence and light scattering from water-soluble hydrophobically associating polymers. In J. E. Glass (Ed.), Polymers in aqueous media (pp. 425–435). Washington, DC, USA: American Chemical Society. DOI: 10.1021/ba-1989-0223.ch023.

    Chapter  Google Scholar 

  • Stähler, K., Selb, J., Barthelemy, P., Pucci, B., & Candau, F. (1998). Novel hydrocarbon and fluorocarbon polymerizable surfactants: Synthesis, characterization and mixing behavior. Langmuir, 14, 4765–4775. DOI: 10.1021/la980245d.

    Article  Google Scholar 

  • Thomas, S. (2008). Enhanced oil recovery — an overview. Oil & Gas Science and Technology, 63, 9–19. DOI: 10.2516/ogst:2007060.

    Article  CAS  Google Scholar 

  • Veerabhadrappa, S. K., Doda, A., Trivedi, J. J., & Kuru, E. (2013). On the effect of polymer elasticity on secondary and tertiary oil recovery. Industrial & Engineering Chemistry Research, 52, 18421–18428. DOI: 10.1021/ie4026456.

    Article  CAS  Google Scholar 

  • Volpert, E., Selb, J., Candau, F., Green, N., Argillier, J. F., & Audibert, A. (1998). Adsorption ofhydrophobically associating polyacrylamides on clay. Langmuir, 14, 1870–1879. DOI: 10.1021/la970358h.

    Article  CAS  Google Scholar 

  • Wu, S. H., Shanks, R. A., & Bryant, G. (2006). Properties of hydrophobically modified polyacrylamide with low molecular weight and interaction with surfactant in aqueous solution. Journal of Applied Polymer Science, 100, 4348–4360. DOI: 10.1002/app.23282.

    Article  CAS  Google Scholar 

  • Zhong, C. R., Luo, P. Y., Ye, Z. B., & Chen, H. (2009). Characterization and solution properties of a novel water-soluble terpolymer for enhanced oil recovery. Polymer Bulletin, 62, 79–89. DOI: 10.1007/s00289-008-1007-6.

    Article  CAS  Google Scholar 

  • Zhou, C. J., Yang, W. M., Yu, Z. N., Zhou, W. L., Xia, Y. M., Han, Z. W., & Wu, Q. L. (2011). Synthesis and solution properties of novel comb-shaped acrylamide copolymers. Polymer Buletin, 66, 407–417. DOI: 10.1007/s00289-010-0360-4.

    Article  CAS  Google Scholar 

  • Zhu, Z. Y., González, Y. I., Xu, H. X., Kaler, E. W., & Liu, S. Y. (2006). Polymerization of anionic wormlike micelles. Langmuir, 22, 949–955. DOI: 10.1021/la052384i.

    Article  CAS  Google Scholar 

  • Zhu, Y. C., Lowe, A. B., & Roth, P. J. (2014). Postpolymerization synthesis of (bis)amide (co)polymers: Thermoresponsive behavior and self-association. Polymer, 55, 4425–4431. DOI: 10.1016/j.polymer.2014.07.003.

    Article  CAS  Google Scholar 

  • Zou, C. J., Zhao, P. W., Hu, X. Z., Yan, X. L., Zhang, Y. Y., Wang, X. J., Song, R. T., & Luo, P. Y. (2013). β-Cyclodextrin-functionalized hydrophobically associating acrylamide copolymer for enhanced oil recovery. Energy & Fuels, 27, 2827–2834. DOI: 10.1021/ef302152t.

    Article  CAS  Google Scholar 

  • Zou, C. J., Gu, T., Xiao, P. F., Ge, T. T., Wang, M., & Wang, K. (2014). Experimental study of cucurbit[7]uril derivatives modified acrylamide polymer for enhanced oil recovery. Industrial & Engineering Chemistry Research, 53, 7570–7578. DOI: 10.1021/ie4037824.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Chao Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, JS., Du, WC., Pu, XL. et al. Synthesis and evaluation of a novel hydrophobically associating polymer based on acrylamide for enhanced oil recovery. Chem. Pap. 69, 1598–1607 (2015). https://doi.org/10.1515/chempap-2015-0185

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0185

Keywords

Navigation