Skip to main content
Log in

Towards the development of highly active copper catalysts for atom transfer radical addition (ATRA) and polymerization (ATRP)

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Fundamentals of copper catalyzed atom transfer radical addition (ATRA) and mechanistically similar polymerization (ATRP) were discussed. Special emphasis was placed on structural characterization and electrochemical properties of copper complexes. Recent advances in the development of highly active copper complexes for both processes were also reviewed. It was found that electron-donating groups (methoxy and methyl in the 4 and 3,5 positions, respectively) of the pyridine rings in tris(2-pyridylmethyl)amine (TPMA) ligand, significantly increase the catalytic activity in copper mediated ATRA/ATRP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Addison, A. W., Nageswara Rao, T., Reedijk, J., van Rijn, J., & Verschoor, G. C. (1984). Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2-yl)-2,6-dithiaheptane]copper(II) perchlorate. Journal of the Chemical Society, Dalton Transactions, 1984, 1349–1356. DOI: 10.1039/dt9840001349.

    Article  Google Scholar 

  • Ambundo, E. A., Deydier, M. V., Grall, A. J., Aguera-Vega, N., Dressel, L. T., Copper, T. H., Heeg, M. J., Ochrymowycz, L. A., & Rorabacher, D. B. (1999). Influence of coordination geometry upon copper(II/I) redox potentials. Physical parameters for twelve copper tripodal ligand complexes. Inorganic Chemistry, 38, 4233–4242. DOI: 10.1021/ic990334t.

    Article  CAS  Google Scholar 

  • Amiel, Y. (1974). The thermal and the copper-catalyzed addition of sulfonyl bromides to phenylacetylene. The Journal of Organic Chemistry, 39, 3867–3870. DOI: 10.1021/jo00940a014.

    Article  CAS  Google Scholar 

  • Anastasaki, A., Nikolaou, V., Simula, A., Godfrey, J., Li, M., Nurumbetov, G., Wilson, P., & Haddleton, D. M. (2014a). Expanding the scope of the photoinduced living radical polymerization of acrylates in the presence of CuBr2 and Me6-Tren. Macromolecules, 47, 3852–3859. DOI: 10.1021/ma500787d.

    Article  CAS  Google Scholar 

  • Anastasaki, A., Nikolaou, V., Zhang, Q., Burns, J., Samanta, S. R., Waldron, C., Haddleton, A. J., McHale, R., Fox, D., Percec, V., Wilson, P., & Haddleton, D. M. (2014b). Copper(II)/tertiary amine synergy in photoinduced living radical polymerization: Accelerated synthesis of ω-functional and α, ω-heterofunctional poly(acrylates). Journal of the American Chemical Society, 136, 1141–1149. DOI: 10.1021/ja411780m.

    Article  CAS  Google Scholar 

  • Asscher, M., & Vofsi, D. (1961). Chlorine activation by redoxtransfer. Part I. The reaction between aliphatic amines and carbon tetrachloride. Journal of Chemical Society, 1961, 2261–2264. DOI: 10.1039/jr9610002261.

    Article  Google Scholar 

  • Baban, J. A., & Roberts, B. P. (1981). An electron spin resonance study of alkyl radical addition to diethyl vinylphosphonate. Journal of the Chemical Society, Perkin Transactions 2, 1981, 161–166. DOI: 10.1039/p29810000161.

    Article  Google Scholar 

  • Balili, M. N. C., & Pintauer, T. (2009). Persistent radical effect in action: Kinetic studies of copper-catalyzed atom transfer radical addition in the presence of free-radical diazo initiators as reducing agents. Inorganic Chemistry, 48, 9018–9026. DOI: 10.1021/ic901359a.

    Article  CAS  Google Scholar 

  • Balili, M. N. C., & Pintauer, T. (2010). Kinetic studies of the initiation step in copper catalyzed atom transfer radical addition (ATRA) in the presence of free radical diazo initiators as reducing agents. Inorganic Chemistry, 49, 5642–5649. DOI: 10.1021/ic100540q.

    Article  CAS  Google Scholar 

  • Balili, M. N. C., & Pintauer, T. (2011). Photoinitiated ambient temperature copper-catalyzed atom transfer radical addition (ATRA) and cyclization (ATRC) reactions in the presence of free-radical diazo initiator (AIBN). Dalton Transactions, 40, 3060–3066. DOI: 10.1039/c0dt01764g.

    Article  CAS  Google Scholar 

  • Bellus, D. (1985). Copper-catalyzed additions of organic polyhalides to olefins: a versatile synthetic tool. Pure and Applied Chemistry, 57, 1827–1838.

    Article  CAS  Google Scholar 

  • Benedetti, M., Forti, L., Ghelfi, F., Pagnoni, U. M., & Ronzoni, R. (1997). Halogen atom transfer radical cyclization of N-allyl-N-benzyl-2,2-dihaloamides to 2-pyrrolidinones, promoted by Fe∘-FeCl3 or CuCl-TMEDA. Tetrahedron, 53, 14031–14042. DOI: 10.1016/s0040-4020(97)00908-3.

    Article  CAS  Google Scholar 

  • Blackman, A. G. (2008). Tripodal tetraamine ligands containing three pyridine units: The other polypyridyl ligands. European Journal of Inorganic Chemistry, 2008, 2633–2647. DOI: 10.1002/ejic.200800115.

    Article  CAS  Google Scholar 

  • Block, E., Aslam, M., Eswarakrishnan, V., Gebreyes, K., Hutchinson, J., Iyer, R., Laffitte, J. A., & Wall, A. (1986). α-Haloalkanesulfonyl bromides in organic synthesis. 5. Versatile reagents for the synthesis of conjugated polyenes, enones, and 1,3-oxathiole 1,1-dioxides. Journal of the American Chemical Society, 108, 4568–4580. DOI: 10.1021/ja00275a051.

    Article  CAS  Google Scholar 

  • Bortolamei, N., Isse, A. A., Di Marco, V. B., Gennaro, A., & Matyjaszewski, K. (2010). Thermodynamic properties of copper complexes used as catalysts in atom transfer radical polymerization. Macromolecules, 43, 9257–9267. DOI: 10.1021/ma101979p.

    Article  CAS  Google Scholar 

  • Bortolamei, N., Isse, A. A., Magenau, A. J. D., Gennaro, A., & Matyjaszewski, K. (2011). Controlled aqueous atom transfer radical polymerization with electrochemical generation of the active catalyst. Angewandte Chemie International Edition, 50, 11391–11394. DOI: 10.1002/anie.201105317.

    Article  CAS  Google Scholar 

  • Braunecker, W. A., & Matyjaszewski, K. (2007). Controlled/living radical polymerization: Features, developments, and perspectives. Progress in Polymer Science, 32, 93–146. DOI: 10.1016/j.progpolymsci.2006.11.002.

    Article  CAS  Google Scholar 

  • Buckingham, D. A., & Sargeson, A. M. (1964). Oxidation-reduction potentials as functions of donor atom and ligand. In F. P. J. Dwyer, & D. P. Mellor (Eds.), Chelating agents and metal chelates (chapter 6, pp. 237–282). New York, NY, USA: Academic Press. DOI: 10.1016/b978-0-12-395499-2.50012-8.

    Chapter  Google Scholar 

  • Caronna, T., Citterio, A., Ghirardini, M., & Minisci, F. (1977). Nucleophilic character of alkyl radicals—XIII: Absolute rate constants for the addition of alkyl radicals to acrylonitrile and methyl acrylate. Tetrahedron, 33, 793–796. DOI: 10.1016/0040-4020(77)80194-4.

    Article  CAS  Google Scholar 

  • Clark, A. J., Dell, C. P., Ellard, J. M., Hunt, N. A., & McDonagh, J. P. (1999). Efficient room temperature copper(I) mediated 5-endo radical cyclizations. Tetrahedron Letters, 40, 8619–8623. DOI: 10.1016/s0040-4039(99)01806-7.

    Article  CAS  Google Scholar 

  • Clark, A. J., De Campo, F., Deeth, R. J., Filik, R. P., Gatard, S., Hunt, N. A., Lastécouères, D., Thomas, G. H., Verlhac, J. B., & Wongtap, H. (2000). Atom transfer radical cyclisations of activated and unactivated N-allylhaloacetamides and N-homoallylhaloacetamides using chiral and non-chiral copper complexes. Journal of the Chemical Society, Perkin Transactions 1, 2000, 671–680. DOI: 10.1039/a909666c.

    Article  Google Scholar 

  • Clark, A. J., Battle, G. M., & Bridge, A. (2001a). Efficient β-lactam synthesis via 4-exo atom tranfer radical cyclisation using CuBr(tripyridylamine) complex. Tetrahedron Letters, 42, 4409–4412. DOI: 10.1016/s0040-4039(01)00737-7.

    Article  CAS  Google Scholar 

  • Clark, A. J., Battle, G. M., Heming, A. M., Haddleton, D. M., & Bridge, A. (2001b). Ligand electronic effects on rates of copper mediated atom transfer radical cyclisation and polymerisation. Tetrahedron Letters, 42, 2003–2005. DOI: 10.1016/s0040-4039(01)00061-2.

    Article  CAS  Google Scholar 

  • Clark, A. J. (2002). Atom transfer radical cyclisation reactions mediated by copper complexes. Chemical Society Reviews, 31, 1–11. DOI: 10.1039/b107811a.

    Article  CAS  Google Scholar 

  • Clark, A. J., & Wilson, P. (2008). Copper mediated atom transfer radical cyclisations with AIBN. Tetrahedron Letters, 49, 4848–4850. DOI: 10.1016/j.tetlet.2008.06.016.

    Article  CAS  Google Scholar 

  • Coessens, V., Pintauer, T., & Matyjaszewski, K. (2001). Functional polymers by atom transfer radical polymerization. Progress in Polymer Science, 26, 337–377. DOI: 10.1016/s0079-6700(01)00003-x.

    Article  CAS  Google Scholar 

  • Curran, D. P. (1992). Comprehensive organic synthesis. New York, NY, USA: Pergamon.

    Google Scholar 

  • De Campo, F., Lastécouères, D., Vincent, J. M., & Verlhac, J. B. (1999). Copper(I) complexes mediated cyclization reaction of unsaturated ester under fluoro biphasic procedure. The Journal of Organic Chemistry, 64, 4969–4971. DOI: 10.1021/jo990134z.

    Article  Google Scholar 

  • De Campo, F., Lastécouères, D., & Verlhac, J. B. (2000). New copper(I) and iron(II) complexes for atom transfer radical macrocyclisation reactions. Journal of the Chemical Society, Perkin Transactions 1, 2000, 575–580. DOI: 10.1039/a908245j.

    Article  Google Scholar 

  • De Malde, M., Minisci, F., Pallini, U., Volterra, E., & Quilico, A. (1956). Reactions between acrylonitriles and aliphatic halogen derivatives. La Chimica e l’Industria, 38, 371–382.

    Google Scholar 

  • Díaz-Álvarez, A. E., Crochet, P., Zablocka, M., Duhayon, C., Cadierno, V., & Majoral, J. P. (2008). Developing the Kharasch reaction in aqueous media: Dinuclear group 8 and 9 catalysts containing the bridging cage ligand tris(1,2-dimethylhydrazino)diphosphane. European Journal of Inorganic Chemistry, 2008, 786–794. DOI: 10.1002/ejic.200701132.

    Article  CAS  Google Scholar 

  • Eckenhoff, W. T., & Pintauer, T. (2007). Atom transfer radical addition in the presence of catalytic amounts of copper(I/II) complexes with tris(2-pyridylmethyl)amine. Inorganic Chemistry, 46, 5844–5846. DOI: 10.1021/ic700908m.

    Article  CAS  Google Scholar 

  • Eckenhoff, W. T., Garrity, S. T., & Pintauer, T. (2008). Highly efficient copper-mediated atom-transfer radical addition (ATRA) in the presence of reducing agent. European Journal of Inorganic Chemistry, 2008, 563–571. DOI: 10.1002/ejic.200701144.

    Article  CAS  Google Scholar 

  • Eckenhoff, W. T., & Pintauer, T. (2010a). Copper catalyzed atom transfer radical addition (ATRA) and cyclization (ATRC) reactions in the presence of reducing agents. Catalysis Reviews: Science and Engineering, 52, 1–59. DOI: 10.1080/01614940903238759.

    Article  CAS  Google Scholar 

  • Eckenhoff, W. T., & Pintauer, T. (2010b). Structural comparison of copper(I) and copper(II) complexes with tris(2-pyridylmethyl)amine ligand. Inorganic Chemistry, 49, 10617–10626. DOI: 10.1021/ic1016142.

    Article  CAS  Google Scholar 

  • Eckenhoff, W. T., & Pintauer, T. (2011). Atom transfer radical addition (ATRA) catalyzed by copper complexes with tris[2-(dimethylamino)ethyl]amine (Me6TREN) ligand in the presence of free-radical diazo initiator AIBN. Dalton Transactions, 40, 4909–4917. DOI: 10.1039/c1dt10189g.

    Article  CAS  Google Scholar 

  • Eckenhoff, W. T., Biernesser, A. B., & Pintauer, T. (2012). Kinetic and mechanistic aspects of atom transfer radical addition (ATRA) catalyzed by copper complexes with tris(2-pyridylmethyl)amine. Inorganic Chemistry, 51, 11917–11929. DOI: 10.1021/ic3018198.

    Article  CAS  Google Scholar 

  • Freidlina, R. K., & Velichko, F. K. (1977). Synthetic applications of homolytic addition and telomerisation reactions of bromine-containing addends with unsaturated compounds containing electron-withdrawing substituents. Synthesis, 1977, 145–154. DOI: 10.1055/s-1977-24301.

    Article  Google Scholar 

  • Ghelfi, F., Bellesia, F., Forti, L., Ghirardini, G., Grandi, R., Libertini, E., Montemaggi, M. C., Pagnoni, U. M., Pinetti, A., De Buyck, D., & Parsons, A. F. (1999). The influence of benzylic protection and allylic substituents on the CuCl-TMEDA catalyzed rearrangement of N-allyl-N-benzyl-2,2-dihaloamides to γ-lactams. Application to the stereoselectives synthesis of pilolactam. Tetrahedron, 55, 5839–5852. DOI: 10.1016/s0040-4020(99)00247-1.

    Article  CAS  Google Scholar 

  • Ghelfi, F., & Parsons, A. F. (2000). N,N-(Dimethylamino)-2-pyrrolidinones from the rearrangement of N-allyl-N′,N′-dimethyl-2,2-dichlorohydrazides promoted by CuCl—N,N, N′,N′-tetramethylethylenediamine. The Journal of Organic Chemistry, 65, 6249–6253. DOI: 10.1021/jo0004153.

    Article  CAS  Google Scholar 

  • Golub, G., Lashaz, A., Cohen, A., Paoletti, P., Bencini, A., Valtancoli, B., & Meyerstein, D. (1997). The effect of N-methylation of tetra-aza-alkane copper complexes on the axial binding of anions. Inorganica Chimica Acta, 255, 111–115. DOI: 10.1016/s0020-1693(96)05352-2.

    Article  CAS  Google Scholar 

  • Gossage, R. A., van De Kuil, L. A., & van Koten, G. (1998). Diaminoarylnickel(II) “pincer” complexes: Mechanistic considerations in the Kharasch addition reaction, controlled polymerization, and dendrimeric transition metal catalysts. Accounts of Chemical Research, 31, 423–431. DOI: 10.1021/ar970221i.

    Article  CAS  Google Scholar 

  • Haddleton, D. M., Crossman, M. C., Hunt, K. H., Topping, C., Waterson, C., & Suddaby, K. G. (1997a). Identifying the nature of the active species in the polymerization of methacrylates: Inhibition of methyl methacrylate homopolymerizations and reactivity ratios for copolymerization of methyl methacrylate/n-butyl methacrylate in classical anionic, alkyllithium/trialkylaluminum-initiated, group transfer polymerization, atom transfer radical polymerization, catalytic chain transfer, and classical free radical polymerization. Macromolecules, 30, 3992–3998. DOI: 10.1021/ma970303m.

    Article  CAS  Google Scholar 

  • Haddleton, D. M., Jasieczek, C. B., Hannon, M. J., & Shooter, A. J. (1997b). Atom transfer radical polymerization of methyl methacrylate initiated by alkyl bromide and 2-pyridinecarbaldehyde imine copper(I) complexes. Macromolecules, 30, 2190–2193. DOI: 10.1021/ma961074.

    Article  CAS  Google Scholar 

  • Haddleton, D. M., Duncalf, D. J., Kukulj, D., Crossman, M. C., Jackson, S. G., Bon, S. A. F., Clark, A. J., & Shooter, A. J. (1998). [N-Alkyl-(2-pyridyl)methanimine]copper(I) complexes: Characterisation and application as catalysts for atom-transfer polymerisation. European Journal of Inorganic Chemistry, 1998, 1799–1806. DOI: 10.1002/(SICI)1099-0682(199811)1998:11<1799∷AID-EJIC1799>3.0.CO;2-6.

    Article  Google Scholar 

  • Harrison, W. D., Kennedy, D. M., Power, M., Sheahan, R., & Hathaway, B. J. (1981). A structural profile of the bis(2,2′-bipyridyl)monochlorocopper(II) cation. Crystal structures of bis(2,2′-bipyridyl)monochlorocopper(II) perchlorate and the nitrate trihydrate. Journal of the Chemical Society, Dalton Transactions, 1981, 1556–1564. DOI: 10.1039/dt9810001556.

    Article  Google Scholar 

  • Iizuka, Y., Li, Z., Satoh, K., Kamigaito, M., Okamoto, Y., Ito, J. I., & Nishiyama, H. (2007). Chiral (−)-DIOP ruthenium complexes for asymmetric radical addition and living radical polymerization reactions. European Journal of Organic Chemistry, 2007, 782–791. DOI: 10.1002/ejoc.200600862.

    Article  CAS  Google Scholar 

  • Isse, A. A., Visona, G., Ghelfi, F., Roncaglia, F., & Gennaro, A. (2015). Electrochemical approach to copper-catalyzed reversed atom transfer radical cyclization. Advanced Synthesis & Catalysis, 357, 782–792. DOI: 10.1002/adsc.201400587.

    Article  CAS  Google Scholar 

  • Jakubowski, W., & Matyjaszewski, K. (2005). Activator generated by electron transfer for atom transfer radical polymerization. Macromolecules, 38, 4139–4146. DOI: 10.1021/ma047389l.

    Article  CAS  Google Scholar 

  • Jakubowski, W., & Matyjaszewski, K. (2006). Activators regenerated by electron transfer for atom-transfer radical polymerization of (meth)acrylates and related block copolymers. Angewandte Chemie International Edition, 45, 4482–4486. DOI: 10.1002/anie.200600272.

    Article  CAS  Google Scholar 

  • Jakubowski, W., Min, K., & Matyjaszewski, K. (2006). Activators regenerated by electron transfer for atom transfer radical polymerization of styrene. Macromolecules, 39, 39–45. DOI: 10.1021/ma0522716.

    Article  CAS  Google Scholar 

  • Julia, M., Sasussine, L., & Le Thuillier, G. (1979a). Addition du chloroacetate de methyle sur les olefines. Journal of Organometallic Chemistry, 174, 359–366. DOI: 10.1016/s0022-328x(00)85601-6.

    Article  CAS  Google Scholar 

  • Julia, M., Le Thuillier, G., & Saussine, L. (1979b). Additions d’α-chloronitriles sur les olefines par catalyse redox. Journal of Organometallic Chemistry, 177, 211–220. DOI: 10.1016/s0022-328x(00)92346-5. (in French)

    Article  CAS  Google Scholar 

  • Kamigaito, M., Ando, T., & Sawamoto, M. (2001). Metal-catalyzed living radical polymerization. Chemical Reviews, 101, 3689–3745. DOI: 10.1021/cr9901182.

    Article  CAS  Google Scholar 

  • Kamigata, N., Sawada, H., & Kobayashi, M. (1983). Reactions of arenesulfonyl chlorides with olefins catalyzed by a ruthenium(II) complex. The Journal of Organic Chemistry, 48, 3793–3796. DOI: 10.1021/jo00169a038.

    Article  CAS  Google Scholar 

  • Kato, M., Kamigaito, M., Sawamoto, M., & Higashimura, T. (1995). Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine)ruthenium(II)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: Possibility of living radical polymerization. Macromolecules, 28, 1721–1723. DOI: 10.1021/ma00109a056.

    Article  CAS  Google Scholar 

  • Kaur, A., Gorse, E. E., Ribelli, T. G., Jerman, C. C., & Pintauer, T. (2015a). Atom transfer radical addition (ATRA) catalyzed by copper complexes with N,N,N′,N‱-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) ligand. Polymer, 72, 246–252. DOI: 10.1016/j.polymer.2015.02.021.

    Article  CAS  Google Scholar 

  • Kaur, A., Ribelli, T. G., Schröder, K., Matyjaszewski, K., & Pintauer, T. (2015b). Properties and ATRP activity of copper complexes with substituted tris(2-pyridylmethyl)amine-based ligands. Inorganic Chemistry, 54, 1474–1486. DOI: 10.1021/ic502484s.

    Article  CAS  Google Scholar 

  • Kharasch, M. S., Engelmann, H., & Mayo, F. R. (1937). The peroxide effect in the addition of reagents to unsaturated compounds. XV. The addition of hydrogen bromide to 1-and 2-bromo- and chloro-propenes. The Journal of Organic Chemistry, 2, 288–302. DOI: 10.1021/jo01226a011.

    Article  CAS  Google Scholar 

  • Kharasch, M. S., Jensen, E. V., & Urry, W. H. (1945a). Addition of carbon tetrachloride and chloroform to olefins. Science, 102, 128–128. DOI: 10.1126/science.102.2640.12.

    Article  CAS  Google Scholar 

  • Kharasch, M. S., Urry, W. H., & Jensen, E. V. (1945b). Addition of derivatives of chlorinated acetic acids to olefins. Journal of the American Chemical Society, 67, 1626–1626. DOI: 10.1021/ja01225a517.

    Article  CAS  Google Scholar 

  • Kickelbick, G., Pintauer, T., & Matyjaszewski, K. (2002). Structural comparison of CuII complexes in atom transfer radical polymerization. New Journal of Chemistry, 26, 462–468. DOI: 10.1039/b105454f.

    Article  CAS  Google Scholar 

  • Konkolewicz, D., Schöder, K., Buback, J., Bernhard, S., & Matyjaszewski, K. (2012). Visible light and sunlight photoinduced ATRP with ppm of Cu catalyst. ACS Macro Letters, 1, 1219–1223. DOI: 10.1021/mz300457e.

    Article  CAS  Google Scholar 

  • Lad, J., Harrison, S., Mantovani, G., & Haddleton, D. M. (2003). Copper mediated living radical polymerisation: interactions between monomer and catalyst. Dalton Transactions, 2003, 4175–4180. DOI: 10.1039/b303888b.

    Article  Google Scholar 

  • Lingane, J. J. (1941). Interpretation of the polarographic waves of complex metal ions. Chemical Reviews, 29, 1–35. DOI: 10.1021/cr60092a001.

    Article  CAS  Google Scholar 

  • Lundgren, R. J., Rankin, M. A., McDonald, R., & Stradiotto, M. (2008). Neutral, cationic, and zwitterionic ruthenium(II) atom transfer radical addition catalysts supported by P, N-substituted indene or indenide ligands. Organometallics, 27, 254–258. DOI: 10.1021/om700914k.

    Article  CAS  Google Scholar 

  • Magenau, A. J. D., Strandwitz, N. C., Gennaro, A., & Matyjaszewski, K. (2011). Electrochemically mediated atom transfer radical polymerization. Science, 332, 81–84. DOI: 10.1126/science.1202357.

    Article  CAS  Google Scholar 

  • Magenau, A. J. D., Kwak, Y., Schröder, K., & Matyjaszewski, K. (2012). Highly active bipyridine-based ligands for atom transfer radical polymerization. ACS Macro Letters, 1, 508–512. DOI: 10.1021/mz3000489.

    Article  CAS  Google Scholar 

  • Magenau, A. J. D., Bortolamei, N., Frick, E., Park, S., Gennaro, A., & Matyjaszewski, K. (2013). Investigation of electrochemically mediated atom transfer radical polymerization. Macromolecules, 46, 4346–4353. DOI: 10.1021/ma400869e.

    Article  CAS  Google Scholar 

  • Maiti, D., Narducci Sarjeant, A. A., Itoh, S., & Karlin, K. D. (2008). Suggestion of an organometallic intermediate in an intramolecular dechlorination reaction involving copper(I) and ArCH2Cl moiety. Journal of the American Chemical Society, 130, 5644–5645. DOI: 10.1021/ja800795b.

    Article  CAS  Google Scholar 

  • Martin, P., Steiner, E., Streith, J., Winkler, T., & Belluš, D. (1985). Convenient approaches to heterocycles via copper-catalysed additions of organic polyhalides to activated olefins. Tetrahedron, 41, 4057–4078. DOI: 10.1016/s0040-4020(01)97184-4.

    Article  CAS  Google Scholar 

  • Matyjaszewski, K., Patten, T. E., & Xia, J. (1997). Controlled/“living” radical polymerization. Kinetics of the homogeneous atom transfer radical polymerization of styrene. Journal of the American Chemical Society, 119, 674–680. DOI: 10.1021/ja963361g.

    Article  CAS  Google Scholar 

  • Matyjaszewski, K. (Ed.) (1998). Controlled radical polymerization (ACS symposium series, Vol. 685). Washington, DC, USA: American Chemical Society. DOI: 10.1021/bk-1998-0685.

    Google Scholar 

  • Matyjaszewski, K. (Ed.) (2000). Controlled/living radical polymerization: Progress in ATPR, NMP and RAFT (ACS symposium series, Vol. 768). Washington, DC, USA: American Chemical Society. DOI: 10.1021/bk-2000-0768.

    Google Scholar 

  • Matyjaszewski, K., & Xia, J. (2001). Atom transfer radical polymerization. Chemical Reviews, 101, 2921–2990. DOI: 10.1021/cr940534g.

    Article  CAS  Google Scholar 

  • Matyjaszewski, K., & Davis, T. P. (Eds.) (2002). Handbook of radical polymerization. Hoboken, NJ, USA: Wiley. DOI: 10.1002/0471220450.

    Google Scholar 

  • Matyjaszewski, K. (Ed.) (2003a). Advances in controlled/living radical polymerization (ACS symposium series, Vol. 854). Washington, DC, USA: American Chemical Society. DOI: 10.1021/bk-2003-0854.

    Google Scholar 

  • Matyjaszewski, K. (2003b). Controlling polymer structures by atom transfer radical polymerization and other controlled/living radical polymerizations. Macromolecular Symposia, 195, 25–31. DOI: 10.1002/masy.200390131.

    Article  CAS  Google Scholar 

  • Matyjaszewski, K. (2005). Macromolecular engineering: From rational design through precise macromolecular synthesis and processing to targeted macroscopic material properties. Progress in Polymer Science, 30, 858–875. DOI: 10.1016/j.progpolymsci.2005.06.004.

    Article  CAS  Google Scholar 

  • Matyjaszewski, K. (Ed.) (2006). Controlled radical polymerization. From synthesis to materials (ACS symposium series, Vol. 944). Washington, DC, USA: American Chemical Society. DOI: 10.1021/bk-2006-0944.

    Google Scholar 

  • Matyjaszewski, K., Jakubowski, W., Min, K., Tang, W., Huang, J., Braunecker, W. A., & Tsarevsky, N. V. (2006). Diminishing catalyst concentration in atom transfer radical polymerization with reducing agents. Proceedings of the National Academy of Sciences of the Untied States of America, 103, 15309–15314. DOI: 10.1073/pnas.0602675103.

    Article  CAS  Google Scholar 

  • Matyjaszewski, K., Gnanou, Y., & Leibler, L. (Eds.) (2007a). Macromolecular engineering: Precise synthesis, materials properties, applications. Weinheim, Germany: Wiley. DOI: 10.1002/978352763142.

    Google Scholar 

  • Matyjaszewski, K., Dong, H., Jakubowski, W., Pietrasik, J., & Kusumo, A. (2007b). Grafting from surfaces for “everyone”: ARGET ATRP in the presence of air. Langmuir, 23, 4528–4531. DOI: 10.1021/la063402e.

    Article  CAS  Google Scholar 

  • Matyjaszewski, K. (2012). Atom transfer radical polymerization (ATRP): Current status and future perspectives. Macromolecules, 45, 4015–4039. DOI: 10.1021/ma3001719.

    Article  CAS  Google Scholar 

  • Matyjaszewski, K. (2014). From cationic ring-opening polymerization to atom transfer radical polymerization. Polimery, 59, 24–37. DOI: 10.14314/polimery.2014.024.

    Article  CAS  Google Scholar 

  • Matyjaszewski, K., & Tsarevsky, N. V. (2014). Macromolecular engineering by atom transfer radical polymerization. Journal of the American Chemical Society, 136, 6513–6533. DOI: 10.1021/ja408069v.

    Article  CAS  Google Scholar 

  • Min, K., Gao, H., & Matyjaszewski, K. (2005). Preparation of homopolymers and block copolymers in miniemulsion by ATRP using activators generated by electron transfer (AGET). Journal of the American Chemical Society, 127, 3825–3830. DOI: 10.1021/ja0429364.

    Article  CAS  Google Scholar 

  • Min, K., Jakubowski, W., & Matyjaszewski, K. (2006). AGET ATRP in the presence of air in miniemulsion and in bulk. Macromolecular Rapid Communications, 27, 594–598. DOI: 10.1002/marc.200600060.

    Article  CAS  Google Scholar 

  • Min, K., Gao, H., & Matyjaszewski, K. (2007). Use of ascorbic acid as reducing agent for synthesis of well-defined polymers by ARGET ATRP. Macromolecules, 40, 1789–1791. DOI: 10.1021/ma0702041.

    Article  CAS  Google Scholar 

  • Miniotte, P. G., Hubert, A. J., & Teyssie, P. (1975). The role of copper(I) complexes in the selective formation of oxazoles from unsaturated nitriles and diazoesters. Journal of Organometallic Chemistry, 88, 115–120. DOI: 10.1016/s0022-328x(00)89335-3.

    Article  Google Scholar 

  • Minisci, F. (1961). Radical reactions in solution. Dipolar character of free radicals from decomposition of organic peroxides. Gazzetta Chimica Italiana, 91, 386–389.

    CAS  Google Scholar 

  • Minisci, F., & Pallini, U. (1961). Radical reactions in solution. Haloalkylation of acrylic acid derivatives. Gazzetta Chimica Italiana, 91, 1030–1036.

    CAS  Google Scholar 

  • Minisci, F., & Galli, R. (1962). Influence of the electrophilic character on the reactivity of free radicals in solution. Reactivity of alkoxy, hydroxy, alkyl and azido radicals in the presence of olefins. Tetrahedron Letters, 3, 533–538. DOI: 10.1016/s0040-4039(00)70508-9.

    Article  Google Scholar 

  • Minisci, F., Cecere, M., & Galli, R. (1963). Oxidation of carbon free radicals in the presence of Cu and Fe salts. New synthesis of nitro derivatives and nitric esters. Gazzetta Chimica Italiana, 93, 1288–1294.

    CAS  Google Scholar 

  • Minisci, F., & Galli, R. (1963). Addition of N-chloroamines to styrene and butadiene, catalyzed by iron and copper salts. La Chimica e l’Industria, 45, 1400–1401.

    CAS  Google Scholar 

  • Minisci, F. (1975). Free-radical additions to olefins in the presence of redox systems. Accounts of Chemical Research, 8, 165–171. DOI: 10.1021/ar50089a004.

    Article  CAS  Google Scholar 

  • Muñoz-Molina, J. M., Caballero, A., Díaz-Requejo, M. M., Trofimenko, S., Belderraín, T. R., & Pérez, P. J. (2007). Copper-homoscorpionate complexes as active catalysts for atom transfer radical addition to olefins. Inorganic Chemistry, 46, 7725–7730. DOI: 10.1021/ic0702872.

    Article  CAS  Google Scholar 

  • Muñoz-Molina, J. M., Belderraín, T. R., & Pérez, P. J. (2008). Copper-catalyzed synthesis of 1,2-disubstituted cyclopentanes from 1,6-dienes by ring-closing Kharasch addition of carbon tetrachloride. Advanced Synthesis & Catalysis, 350, 2365–2372. DOI: 10.1002/adsc.200800364.

    Article  CAS  Google Scholar 

  • Muñoz-Molina, J. M., Belderrain, T. R., & Pérez, P. J. (2011). Atom transfer radical reactions as a tool for olefin functionalization — on the way to practical applications. European Journal of Inorganic Chemistry, 2011, 3155–3164. DOI: 10.1002/ejic.201100379.

    Article  CAS  Google Scholar 

  • Murai, S., Sonoda, N., & Tsutsumi, S. (1964). Copper salts induced addition of ethyl trichloroacetate to olefins. The Journal of Organic Chemistry, 31, 2104–2105. DOI: 10.1021/jo01030a565.

    Article  Google Scholar 

  • Nagashima, H., Wakamatsku, H., Itoh, K., Tomo, Y., & Tsuji, J. (1983). New regio- and stereoselective preparation of trichlorinated γ-butyrolactones by copper catalyzed cyclization of allyl trichloroacetates. Tetrahedron Letters, 24, 2395–2398. DOI: 10.1016/s0040-4039(00)81935-8.

    Article  CAS  Google Scholar 

  • Nagashima, H., Seki, K., Ozaki, N., Wakamatshu, H., Itoh, K., Tomo, Y., & Tsuji, J. (1990). Transition-metal-catalyzed radical cyclization: Copper-catalyzed cyclization of allyl trichloroacetates to trichlorinated γ-lactones. The Journal of Organic Chemistry, 55, 985–990. DOI: 10.1021/jo00290a032.

    Article  CAS  Google Scholar 

  • Nguyen, J. D., Tucker, J. W., Konieczynska, M. D., & Stephenson, C. R. J. (2011). Intermolecular atom transfer radical addition to olefins mediated by oxidative quenching of photoredox catalysts. Journal of the American Chemical Society, 133, 4160–4163. DOI: 10.1021/ja108560e.

    Article  CAS  Google Scholar 

  • Odian, G. (2004). Principles of polymerization (4th ed.). Hoboken, NJ, USA: Wiley. DOI: 10.1002/047147875x.

    Book  Google Scholar 

  • Oe, Y., & Uozumi, Y. (2008). Highly efficient heterogeneous aqueous Kharasch reaction with an amphiphilic resinsupported ruthenium catalyst. Advanced Synthesis & Catalysis, 350, 1771–1775. DOI: 10.1002/adsc.200800359.

    Article  CAS  Google Scholar 

  • Patten, T. E., & Matyjaszewski, K. (1999). Copper(I)-catalyzed atom transfer radical polymerization. Accounts of Chemical Research, 32, 895–903. DOI: 10.1021/ar9501434.

    Article  CAS  Google Scholar 

  • Pintauer, T., McKenzie, B., & Matyjaszewski, K. (2003). Toward structural and mechanistic understanding of transition metal-catalyzed atom transfer radical processes. In K. Matyjaszewski (Ed.), Advances in controlled/living radical polymerization (ACS symposium series, Vol. 854, chapter 10, pp. 130–147). Washington, DC, USA: American Chemical Society. DOI: 10.1021/bk-2003-0854.

    Chapter  Google Scholar 

  • Pintauer, T., & Matyjaszewski, K. (2005). Structural aspects of copper catalyzed atom transfer radical polymerization. Coordination Chemistry Reviews, 249, 1155–1184. DOI: 10.1016/j.ccr.2004.11.010.

    Article  CAS  Google Scholar 

  • Pintauer, T. (2008). Atom transfer radical addition (ATRA) catalyzed by ppm amounts of copper complexes. Polymer Preprints (American Chemical Society, Division of Polymer Chemistry), 49, 12–13.

    CAS  Google Scholar 

  • Pintauer, T., & Matyjaszewski, K. (2008). Atom transfer radical addition and polymerization reactions catalyzed by ppm amounts of copper complexes. Chemical Society Reviews, 37, 1087–1097. DOI: 10.1039/b714578k.

    Article  CAS  Google Scholar 

  • Pintauer, T. (2009). “Greening” of copper catalyzed atom transfer radical addition (ATRA) and cyclization (ATRC) reactions. In K. Matyjaszewski (Ed.), Controlled/living radical polymerization: Progress in ATRP (ACS symposium series, Vol. 1023, chapter 5, pp. 63–84). Washington, DC, USA: American Chemical Society. DOI: 10.1021/bk-2009-1023.ch005.

    Chapter  Google Scholar 

  • Pintauer, T., & Matyjaszewski, K. (2009). Structural and mechanistic aspects of copper catalyzed atom transfer radical polymerization. In Z. Guan (Ed.), Metal catalysts in olefin polymerization (Series: Topics in organometallic chemistry, Vol. 26, pp. 221–251). Berlin, Germany: Springer. DOI: 10.1007/341820088.

    Chapter  Google Scholar 

  • Pintauer, T., Eckenhoff, W. T., Ricardo, C., Balili, M. N. C., Biernesser, A. B., Noonan, S. J., & Taylor, M. J. W. (2009). Highly efficient, ambient-temperature copper-catalyzed atom-transfer radical addition (ATRA) in the presence of free-radical initiator (V-70) as a reducing agent. Chemistry — A European Journal, 15, 38–41. DOI: 10.1002/chem.200802048.

    Article  CAS  Google Scholar 

  • Pintauer, T. (2010). Catalyst regeneration in transition-metal-mediated atom-transfer radical addition (ATRA) and cyclization (ATRC) reactions. European Journal of Inorganic Chemistry, 2010, 2449–2460. DOI: 10.1002/ejic.201000234.

    Article  CAS  Google Scholar 

  • Pintauer, T., & Matyjaszewski, K. (2012). Atom transfer radical polymerization (ATRP) and addition (ATRA) and applications. In C. Chatgilialoglu, & A. Studer (Eds.), Encyclopedia of radicals in chemistry, biology and materials (Vol. 1, chapter 62, pp. 1851–1894). Chichester, UK: Wiley.

    Google Scholar 

  • Pirrung, F. O. H., Hiemstra, H., Kaptein, B., Martinez Sobrino, M. E., Petra, D. G. I., Schoemaker, H. E., & Speckamp, W. N. (1993). Diastereoselective synthesis of medium-sized lactones by Cu(bpy)Cl catalyzed cyclization of trichloroacetates. Synlett, 1993, 739–740. DOI: 10.1055/s-1993-22590.

    Article  Google Scholar 

  • Pirrung, F. O. H., Hiemstra, H., Speckamp, W. N., Kaptein, B., & Schoemaker, H. E. (1994). Synthesis of medium-sized lactones by the copper(I)chloride/2,2′-bipyridine-catalyzed cyclization of di- and trichloroacetates. Tetrahedron, 50, 12415–12442. DOI: 10.1016/s0040-4020(01)89549-1.

    Article  CAS  Google Scholar 

  • Pirrung, F. O. H., Hiemstra, H., Speckamp, W. N., Kaptein, B., & Schoemaker, H. E. (1995). Synthesis of enetiometrically pure eight- and nine-membered lactones by copper(I) chloride/2,2′-bipyridine-catalyzed cyclization. Synthesis, 1995, 458–472. DOI: 10.1055/s-1995-4429.

    Article  Google Scholar 

  • Pirtsch, M., Paria, S., Matsuno, T., Isobe, H., & Reiser, O. (2012). [Cu(dap)2Cl] as an efficient visible-light-driven photoredox catalyst in carbon-carbon bond-forming reactions. Chemistry — A European Journal, 18, 7336–7340. DOI: 10.1002/chem.201200967.

    Article  CAS  Google Scholar 

  • Qiu, J., Matyjaszewski, K., Thouin, L., & Amatore, C. (2000). Cyclic voltammetric studies of copper complexes catalyzing atom transfer radical polymerization. Macromolecular Chemistry and Physics 201, 1625–1631. DOI: 10.1002/1521-3935(20000901)201:14<1625∷AID-MACP1625>3.0.CO;2-9.

    Article  CAS  Google Scholar 

  • Quebatte, L., Thommes, K., & Severin, K. (2006). Highly efficient atom transfer radical addition reactions with a RuIII complex as a catalyst precursor. Journal of the American Chemical Society, 128, 7440–7441. DOI: 10.1021/ja0617542.

    Article  CAS  Google Scholar 

  • Ribelli, T. G., Konkolewicz, D., Bernhard, S., & Matyjaszewski, K. (2014a). How are radicals (re)generated in photochemical ATRP? Journal of the American Chemical Society, 136, 13303–13312. DOI: 10.1021/ja506379s.

    Article  CAS  Google Scholar 

  • Ribelli, T. G., Konkolewicz, D., Pan, X., & Matyjaszewski, K. (2014b). Contribution of photochemistry to activator regeneration in ATRP. Macromolecules, 47, 6316–6321. DOI: 10.1021/ma501384q.

    Article  CAS  Google Scholar 

  • Ricardo, C., & Pintauer, T. (2009). Copper catalyzed atom transfer radical cascade reactions in the presence of free-radical diazo initiators as reducing agents. Chemical Communications, 2009, 3029–3031. DOI: 10.1039/b905839g.

    Article  CAS  Google Scholar 

  • Ricardo, C. L., & Pintauer, T. (2011). One-pot sequential azide-alkyne [3+2] cycloaddition and atom transfer radical addition (ATRA): Expanding the scope of in situ copper(I) regeneration in the presence of environmentally benign reducing agent. European Journal of Inorganic Chemistry, 2011, 1292–1301. DOI: 10.1002/ejic.201001335.

    Article  CAS  Google Scholar 

  • Ricardo, C. L., & Pintauer, T. (2012a). Highly efficient organic and macromolecular synthesis using sequential copper catalyzed azide-alkyne [3+2] cycloaddition and ATRA/ATRP. In K. Matyjaszewski, B. S. Sumerlin, & N. V Tsarevsky (Eds.), Progress in controlled radical polymerization: Mechanisms and techniques (ACS symposium series, Vol. 1100, chapter 6, pp. 73–98). Washington, DC, USA: American Chemical Society. DOI: 10.1021/bk-2012-1100.ch006.

    Chapter  Google Scholar 

  • Ricardo, C. L., & Pintauer, T. (2012b). Synthesis of functionalized polytriazoles via one-pot sequential copper-catalyzed azide-alkyne [3+2] cycloaddition and atom transfer radical addition (ATRA). Israel Journal of Chemistry, 52, 320–327. DOI: 10.1002/ijch.201100111.

    Article  CAS  Google Scholar 

  • Rossotti, F. J. C., & Rossotti, H. (1961). The determination of stability constants: And other equilibrium constants in solution (McGraw-Hill series in advanced chemistry). New York, NY, USA: McGraw-Hill.

    Google Scholar 

  • Schröder, K., Konkolewicz, D., Poli, R., & Matyjaszewski, K. (2012a). Formation and possible reactions of organometallic intermediates with active copper(I) catalysts in ATRP. Organometallics, 31, 7994–7999. DOI: 10.1021/om3006883.

    Article  CAS  Google Scholar 

  • Schröder, K., Mathers, R. T., Buback, J., Konkolewicz, D., Magenau, A. J. D., & Matyjaszewski, K. (2012b). Substituted tris(2-pyridylmethyl)amine ligands for highly active ATRP catalysts. ACS Macro Letters, 1, 1037–1040. DOI: 10.1021/mz3003787.

    Article  CAS  Google Scholar 

  • Schröder, K., Matyjaszewski, K., Noonan, K. J. T., & Mathers, R. T. (2014). Towards sustainable polymer chemistry with homogeneous metal-based catalysts. Green Chemistry, 16, 1673–1686. DOI: 10.1039/c3gc42159g.

    Article  Google Scholar 

  • Sebren, L. J., Devery, J. J., III, & Stephenson, C. R. J. (2014). Catalytic radical domino reactions in organic synthesis. ACS Catalysis, 4, 703–716. DOI: 10.1021/cs400995r.

    Article  CAS  Google Scholar 

  • Severin, K. (2006). Ruthenium catalysts for the Kharasch reaction. Current Organic Chemistry, 10, 217–224. DOI: 10.2174/138527206775192915.

    Article  CAS  Google Scholar 

  • Sinnreich, J., & Asscher, M. (1972). Redox-transfer. Part VII. Addition of ethylene and butadiene to functionally substituted aromatic sulfonyl chlorides. Journal of the Chemical Society, Perkin Transactions 1, 1972, 1543–1545. DOI: 10.1039/p19720001543.

    Article  Google Scholar 

  • Steiner, E., Martin, P., & Belluš, D. (1982). Eine neue, einfache Synthese von 2,3,5-Trichlorpyridin. Helvetica Chimica Acta, 65, 983–985. DOI: 10.1002/hlca.19820650330. (in German)

    Article  CAS  Google Scholar 

  • Tang, W., Tsarevsky, N. V., & Matyjaszewski, K. (2006). Determination of equilibrium constants for atom transfer radical polymerization. Journal of the American Chemical Society, 128, 1598–1604. DOI: 10.1021/ja0558591.

    Article  CAS  Google Scholar 

  • Tang, W., Kwak, Y., Braunecker, W., Tsarevsky, N. V., Coote, M. L., & Matyjaszewski, K. (2008). Understanding atom transfer radical polymerization: Effect of ligand and initiator structures on the equilibrium constants. Journal of the American Chemical Society, 130, 10702–10713. DOI: 10.1021/ja802290a.

    Article  CAS  Google Scholar 

  • Taylor, M. J. W., Eckenhoff, W. T., & Pintauer, T. (2010). Copper catalyzed atom transfer radical addition (ATRA) and cyclization (ATRC) reactions in the presence of environmentally benign ascorbic acid as a reducing agent. Dalton Transactions, 39, 11475–11482. DOI: 10.1039/c0dt01157f.

    Article  CAS  Google Scholar 

  • Thommes, K., Içli, B., Scopelliti, R., & Severin, K. (2007). Atom-transfer radical addition (ATRA) and cyclization (ATRC) reactions catalyzed by a mixture of [RuCl2Cp* (PPh3)] and magnesium. Chemistry — A European Journal, 13, 6899–6907. DOI: 10.1002/chem.200700442.

    Article  CAS  Google Scholar 

  • Treat, N. J., Sprafke, H., Kramer, J. W., Clark, P. G., Barton, B. E., Read de Alaniz, J., Fors, B. P., & Hawker, C. J. (2014). Metal-free atom transfer radical polymerization. Journal of the American Chemical Society, 136, 16096–16101. DOI: 10.1021/ja510389m.

    Article  CAS  Google Scholar 

  • Truce, W. E., & Wolf, G. C. (1971). Adducts of sulfonyl iodides with acetylenes. The Journal of Organic Chemistry, 36, 1727–1732. DOI: 10.1021/jo00812a001.

    Article  CAS  Google Scholar 

  • Tsarevsky, N. V., Tang, W., Brooks, S. J., & Matyjaszewski, K. (2006). Factors determining the performance of copper-based atom transfer radical polymerization catalysts and criteria for rational catalyst selection. In K. Matyjaszewski (Ed.), Controlled/living radical polymerization: From synthesis to materials (ACS symposium series, Vol. 944, chapter 5, pp. 56–70). DOI: 10.1021/bk-2006-0944.ch005.

  • Tsarevsky, N. V., & Matyjaszewski, K. (2007). “Green” atom transfer radical polymerization: From process design to preparation of well-defined environmentally friendly polymeric materials. Chemical Reviews, 107, 2270–2299. DOI: 10.1021/cr050947p.

    Article  CAS  Google Scholar 

  • Tsarevsky, N. V., Braunecker, W. A., Vacca, A., Gans, P., & Matyjaszewski, K. (2007a). Competitive equilibria in atom transfer radical polymerization. Macromolecular Symposia, 248, 60–70. DOI: 10.1002/masy.200750207.

    Article  CAS  Google Scholar 

  • Tsarevsky, N. V., Braunecker, W. A., & Matyjaszewski, K. (2007b). Electron transfer reactions relevant to atom transfer radical polymerization. Journal of Organometallic Chemistry, 692, 3212–3222. DOI: 10.1016/j.jorganchem.2007.01.051.

    Article  CAS  Google Scholar 

  • Tsarevsky, N. V., & Matyjaszewski, K. (2013). Atom transfer radical polymerization (ATRP). In N. V. Tsarevsky, & B. S. Sumerlin (Eds.), Fundamentals of controlled/living radical polymerization (RSC polymer chemistry series, Vol. 4, chapter 8, pp. 287–357). London, UK: Royal Society of Chemistry. DOI: 10.1039/9781849737425-00287.

    Chapter  Google Scholar 

  • Vlček, A. A. (1963). Polarographic behavior of coordination compounds. In F. A. Cotton (Ed.), Progress in inorganic chemistry (Vol. 5, chapter 3, pp. 211–384). Hoboken, NJ, USA: Wiley. DOI: 10.1002/9780470166062.ch3.

    Chapter  Google Scholar 

  • Wallentin, C. J., Nguyen, J. D., Finkbeiner, P., & Stephenson, C. R. J. (2012). Visible light-mediated atom transfer radical addition via oxidative and reductive quenching of photocatalysts. Journal of the American Chemical Society, 134, 8875–8884. DOI: 10.1021/ja300798k.

    Article  CAS  Google Scholar 

  • Wang, J. S., & Matyjaszewski, K. (1995). Controlled/“living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. Journal of the American Chemical Society, 117, 5614–5615. DOI: 10.1021/ja00125a035.

    Article  CAS  Google Scholar 

  • Wang, Y., Soerensen, N., Zhong, M., Schroeder, H., Buback, M., & Matyjaszewski, K. (2013). Improving the “livingness” of ATRP by reducing Cu catalyst concentration. Macromolecules, 46, 683–691. DOI: 10.1021/ma3024393.

    Article  CAS  Google Scholar 

  • Wolf, J., Thommes, K., Briel, O., Scopelliti, R., & Severin, K. (2008). Dinuclear ruthenium ethylene complexes: Syntheses, structures, and catalytic applications in ATRA and ATRC reactions. Organometallics, 27, 4464–4474. DOI: 10.1021/om8004096.

    Article  CAS  Google Scholar 

  • Xue, G., Wang, D., De Hont, R., Fiedler, A. T., Shan, X., Münck, E., & Que, L., Jr. (2007). A synthetic precedent for the [Fe IV2 (µ-O)2] diamond core proposed for methane monooxygenase intermediate Q. Proceedings of the National Academy of Sciences of the United States of America, 104, 20713–20718. DOI: 10.1073/pnas.0708516105.

    Article  CAS  Google Scholar 

  • Yang, D., Yan, Y. L., Zheng, B. F., Gao, Q., & Zhu, N. Y. (2006). Copper(I)-catalyzed chlorine atom transfer radical cyclization reactions of unsaturated α-chloro β-keto esters. Organic Letters, 8, 5757–5760. DOI: 10.1021/ol0623264.

    Article  CAS  Google Scholar 

  • Zhang, C. X., Kaderli, S., Costas, M., Kim, E. I., Neuhold, Y. M., Karlin, K. D., & Zuberbühler, A. D. (2003). Copper(I)-dioxygen reactivity of [(L)CuI]+ (L = tris(2-pyridylmethyl)amine): Kinetic/thermodynamic and spectroscopic studies concerning the formation of Cu—O2 and Cu2—O2 aducts as a function of solvent medium and 4-pyridyl ligand substituent variations. Inorganic Chemistry, 42, 1807–1824. DOI: 10.1021/ic0205684.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomislav Pintauer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pintauer, T. Towards the development of highly active copper catalysts for atom transfer radical addition (ATRA) and polymerization (ATRP). Chem. Pap. 70, 22–42 (2016). https://doi.org/10.1515/chempap-2015-0183

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0183

Keywords

Navigation