Skip to main content

Advertisement

Log in

Catalysis in glycerol: a survey of recent advances

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

There is currently a significant increase in the use of glycerol as a renewable solvent for catalytic reactions. Glycerol has often been the solvent of choice in both homogeneous and heterogeneous catalyses, despite its high viscosity at ambient temperature and the low solubility of highly hydrophobic reagents found in glycerol. Its biodegradability and non-toxicity have led to reports of improved reaction performance and selectivity, as well as easier product separation and effective catalyst recycling. All relevant advances in this emerging field of “green” catalysis are thoroughly reviewed below.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azua, A., Mata, J. A., & Peris, E. (2011). Iridium NHC based catalysts for transfer hydrogenation processes using glycerol as solvent and hydrogen donor. Organometallics, 30, 5532–5536. DOI: 10.1021/om200796c.

    Article  CAS  Google Scholar 

  • Azua, A., Mata, J. A., Peris, E., Lamaty, F., Martinez, J., & Colacino, E. (2012). Alternative energy input for transfer hydrogenation using iridium NHC based catalysts in glycerol as hydrogen donor and solvent. Organometallics, 31, 3911–3919. DOI: 10.1021/om300109e.

    Article  CAS  Google Scholar 

  • Azua, A., Mata, J. A., Heymes, P., Peris, E., Lamaty, F., Martinez, J., & Colacino, E. (2013). Palladium N-heterocyclic carbene catalysts for the ultrasound-promoted Suzuki-Miyaura reaction in glycerol. Advanced Synthesis & Catalysis, 355, 1107–1116. DOI: 10.1002/adsc.201201047.

    Article  CAS  Google Scholar 

  • Benoit, M., Brissonnet, Y., Guélou, E., De Oliveira Vigier, K., Barrault, J., & François, J. (2010). Acid-catalyzed dehydration of fructose and inulin with glycerol or glycerol carbonate as renewably sourced co-solvent. ChemSusChem, 3, 1304–1309. DOI: 10.1002/cssc.201000162.

    Article  CAS  Google Scholar 

  • Carmona, R. C., Schevciw, E. P., Petrarca de Albuquerque, J. L., Wendler, E. P., & Dos Santos, A. A. (2013). Joint use of microwave and glycerol-zinc(II) acetate catalytic system in the synthesis of 2-pyridyl-2-oxazolines. Green Process and Synthesis, 2, 35–42. DOI: 10.1515/gps-2012-0085.

    CAS  Google Scholar 

  • Chahdoura, F., Pradel, C., & Gómez, M. (2013a). Palladium nanoparticles in glycerol: A versatile catalytic system for C—X bond formation and hydrogenation processes. Advanced Synthesis & Catalysis, 355, 3648–3660. DOI: 10.1002/adsc.201300753.

    Article  CAS  Google Scholar 

  • Chahdoura, F., Dubrulle, L., Fourmy, K., Durand, J., Madec, D., & Gómez, M. (2013b). Glycerol — a non-innocent solvent for Rh-catalysed Pauson-Khand carbocyclisations. European Journal of Inorganic Chemistry, 2013, 5138–5144. DOI: 10.1002/ejic.201300651.

    Article  CAS  Google Scholar 

  • Chahdoura, F., Favier, I., & Gómez, M. (2014a). Glycerol as suitable solvent for the synthesis of metallic species and catalysis. Chemistry — A European Journal, 20, 10884–10893. DOI: 10.1002/chem.201403534.

    Article  CAS  Google Scholar 

  • Chahdoura, F., Pradel, C., & Gómez, M. (2014b). Copper(I) oxide nanoparticles in glycerol: A convenient catalyst for cross-coupling and azide-alkyne cycloaddition processes. ChemCatChem, 6, 2929–2936. DOI: 10.1002/cctc.201402214.

    Article  CAS  Google Scholar 

  • Chahdoura, F., Mallet-Ladeira, S., & Gómez, M. (2015). Palladium nanoparticles in glycerol: A clear-cut catalyst for one-pot multi-step processes applied in the synthesis of hetero-cyclic compounds. Organic Chemistry Frontiers, 2, 312–318. DOI: 10.1039/c4qo00338a.

    Article  CAS  Google Scholar 

  • Cintas, P., Tagliapietra, S., Calcio Gaudino, E., Palmisano, G., & Cravotto, G. (2014). Glycerol: A solvent and a building block of choice for microwave and ultrasound irradiation procedures. Green Chemistry, 16, 1056–1065. DOI: 10.1039/c3gc41955j.

    Article  CAS  Google Scholar 

  • Cravotto, G., Orio, L., Calcio Gaudino, E., Martina, K., Tavor, D., & Wolfson, A. (2011). Efficient synthetic protocols in glycerol under heterogeneous catalysis. ChemSusChem, 4, 1130–1134. DOI: 10.1002/cssc.201100106.

    Article  CAS  Google Scholar 

  • Delample, M., Villandier, N., Douliez, J. P., Camy, S., Condoret, J. S., Pouilloux, Y., Barrault, J., & Jérôme, F. (2010). Glycerol as a cheap, safe and sustainable solvent for the catalytic and regioselective β, β-diarylation of acrylates over palladium nanoparticles. Green Chemistry, 12, 804–808. DOI: 10.1039/b925021b.

    Article  CAS  Google Scholar 

  • Díaz-Álvarez, A. E., Crochet, P., & Cadierno, V. (2011). Ruthenium-catalyzed reduction of allylic alcohols using glycerol as solvent and hydrogen donor. Catalysis Communications, 13, 91–96. DOI: 10.1016/j.catcom.2011.07.006.

    Article  Google Scholar 

  • Díaz-Álvarez, A. E., & Cadierno, V. (2013). Glycerol: A promising green solvent and reducing agent for metal-catalyzed transfer hydrogenation reactions and nanoparticles formation. Applied Sciences, 3, 55–69. DOI: 10.3390/app3010055.

    Article  Google Scholar 

  • Díaz-Álvarez, A. E., Francos, J., Croche, P., & Cadierno, V. (2014). Recent advances in the use ofglycerol as green solvent for synthetic organic chemistry. Current Green Chemistry, 1, 51–65. DOI: 10.2174/221334610101131218094907.

    Article  Google Scholar 

  • Francos, J., & Cadierno, V. (2010). Palladium-catalyzed cycloisomerization of (Z)-enynols into furans using green solvents: Glycerol vs. water. Green Chemistry, 12, 1552–1555. DOI: 10.1039/c0gc00169d.

    Article  CAS  Google Scholar 

  • García-Marín, H., van der Toorn, J. C., Mayoral, J. A., García, J. I., & Arends, I. W. C. E. (2009). Glycerol-based solvents as green reaction media in epoxidations with hydrogen peroxide catalysed by bis[3,5-bis(trifluoromethyl)-diphenyl] diselenide. Green Chemistry, 11, 1605–1609. DOI: 10.1039/b913052g.

    Article  Google Scholar 

  • García-Marín, H., van der Toorn, J. C., Mayoral, J. A., García, J. I., & Arends, I. W. C. E. (2011). Epoxidation of cyclooctene and cyclohexene with hydrogen peroxide catalyzed by bis[3,5-bis(trifluoromethyl)-diphenyl] diselenide: Recyclable catalyst-containing phases through the use of glycerol-derived solvents. Journal of Molecular Catalysis A, 334, 83–88. DOI: 10.1016/j.molcata.2010.10.027.

    Article  Google Scholar 

  • Gawande, M. B., Rathi, A. K., Branco, P. S., Nogueira, I. D., Velhinho, A., Shrikhande, J. J., Indulkar, U. U., Jayaram, R. V., Ghumman, C. A. A., Bundaleski, N., & Teodoro, O. M. N. D. (2012). Regio- and chemoselective reduction of nitroarenes and carbonyl compounds over recyclable magnetic ferritenickel nanoparticles (Fe3O4-Ni) by using glycerol as a hydrogen source. Chemistry — A European Journal, 18, 12628–12632. DOI: 10.1002/chem.201202380.

    Article  CAS  Google Scholar 

  • Gonçalves, L. C., Fiss, G. F., Perin, G., Alves, D., Jacob, R. G., & Lenardão, E. J. (2010). Glycerol as a promoting medium for cross-coupling reactions of diaryl diselenides with vinyl bromides. Tetrahedron Letters, 51, 6772–6775. DOI: 10.1016/j.tetlet.2010.10.107.

    Article  Google Scholar 

  • Guyon, C., Métay, E., Duguet, N., & Lemaire, M. (2013). Biphasic glycerol/2-MeTHF, ruthenium-catalysed enantioselective transfer hydrogenation of ketones using sodium hypophosphite as hydrogen donor. European Journal of Organic Chemistry, 2013, 5439–5444. DOI: 10.1002/ejoc.201300506.

    Article  CAS  Google Scholar 

  • Handy, S., & Lavender, K. (2013). Organic synthesis in deep eutectic solvents: Paal-Knorr reactions. Tetrahedron Letters, 54, 4377–4379. DOI: 10.1016/j.tetlet.2013.05.122.

    Article  CAS  Google Scholar 

  • Karam, A., Villandier, N., Delample, M., Klein Koerkamp, C., Douliez, J. P., Granet, R., Krausz, P., Barrault, J., & Jérôme, F. (2008). Rational design of sugar-based-surfactant combined catalysts for promoting glycerol as a solvent. Chemistry — A European Journal, 14, 10196–10200. DOI: 10.1002/chem.200801495.

    Article  CAS  Google Scholar 

  • Pagliaro, M., & Rossi, M. (2008). The future of glycerol: New usages for a versatile raw material. Cambridge, UK: RSC Publishoing. DOI: 10.1039/9781847558305.

    Google Scholar 

  • Perin, G., Mesquita, K., Calheiro, T. P., Silva, M. S., Lenardăo, E. J., Alves, D., & Jacob, R. G. (2014). Synthesis of β-aryl-β-sulfanyl ketones by a sequential one-pot reaction using KF/Al2O3 in glycerol. Synthetic Communications, 44, 49–58. DOI: 10.1080/00397911.2013.788720.

    Article  CAS  Google Scholar 

  • Quan, Z. J., Ren, R. G., Da, Y. X., Zhang, Z., & Wang, X. C. (2011). Glycerol as an alternative green reaction medium for multicomponent reactions using Ps-PEG-OSO3H as catalyst. Synthetic Communications, 41, 3106–3116. DOI: 10.1080/00397911.2010.517373.

    Article  CAS  Google Scholar 

  • Ricordi, V. G., Freitas, C. S., Perin, G., Lenardăo, E. J., Jacob, R. G., Savegnago, L., & Alves, D. (2012). Glycerol as a recyclable solvent for copper-catalyzed cross-coupling reactions of diaryl diselenides with aryl boronic acids. Green Chemistry, 14, 1030–1034. DOI: 10.1039/c2gc16427b.

    Article  CAS  Google Scholar 

  • Sequeiros, A., Serrano, L., Briones, R., & Labidi, J. (2013). Lignin liquefaction under microwave heating. Journal of Applied Polymer Science, 130, 3292–3298. DOI: 10.1002/app.39577.

    Article  CAS  Google Scholar 

  • Sharma, N., Sharma, A., Shard, A., Kumar, R., Saima, & Sinha, A. K. (2011). Pd-catalyzed orthogonal Knoevenagel/Perkin condensation-decarboxylation-Heck/Suzuki sequences: Tandem transformations of benzaldehydes into hydroxy-functionalized antidiabetic stilbene-cinnamoyl hybrids and asymmetric distyrylbenzenes. Chemistry — A European Journal, 17, 10350–10356. DOI: 10.1002/chem.201101174.

    Article  CAS  Google Scholar 

  • Soares, B., Gama, N., Freire, C., Barros-Timmons, A., Brandão, I., Silva, R., Pascoal Neto, C., & Ferreira, A. (2014). Ecopolyol production from industrial cork powder via acid liquefaction using polyhydric alcohols. ACS Sustainable Chemistry & Engineering, 2, 846–854. DOI: 10.1021/sc400488c.

    Article  CAS  Google Scholar 

  • Sutter, M., Pehlivan, L., Lafon, R., Dayoub, W., Raoul, Y., Métay, E., & Lemaire, M. (2013). 1,2,3-Trimethoxypropane, a glycerol-based solvent with low toxicity: New utilization for the reduction of nitrile, nitro, ester and acid functional groups with TMDS and a metal catalyst. Green Chemistry, 15, 3020–3026. DOI: 10.1039/c3gc41082j.

    Article  CAS  Google Scholar 

  • Tavor, D., Popov, S., Dlugy, C., & Wolfson, A. (2010). Catalytic transfer-hydrogenations of olefins in glycerol. Organic Communications, 3, 70–75.

    CAS  Google Scholar 

  • Tavor, D., Gefen, I., Dlugy, C., & Wolfson, A. (2011). Transfer hydrogenations of nitrobenzene using glycerol as solvent and hydrogen donor. Synthetic Communications, 41, 3409–3416. DOI: 10.1080/00397911.2010.518276.

    Article  CAS  Google Scholar 

  • Wolfson, A., & Dlugy, C. (2007). Palladium-catalyzed Heck and Suzuki coupling in glycerol. Chemical Papers, 61, 228–232. DOI: 10.2478/s11696-007-0026-3.

    Article  CAS  Google Scholar 

  • Wolfson, A., Dlugy, C., Shotland, Y., & Tavor, D. (2009). Glycerol as solvent and hydrogen donor in transfer hydrogenation-dehydrogenation reactions. Tetrahedron Letters, 50, 5951–5953. DOI: 10.1016/j.tetlet.2009.08.035.

    Article  CAS  Google Scholar 

  • Wolfson, A., Snezhko, A., Meyouhas, T., & Tavor, D. (2012). Glycerol derivatives as green reaction mediums. Green Chemistry Letters and Reviews, 5, 7–12. DOI: 10.1080/17518253.2011.572298.

    Article  CAS  Google Scholar 

  • Wolfson, A., Dlugy, C., & Tavor, D. (2013). Baker’s yeast catalyzed asymmetric reduction of prochiral ketones in different reaction medium. Organic Communications, 6, 1–11.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Cravotto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tagliapietra, S., Orio, L., Palmisano, G. et al. Catalysis in glycerol: a survey of recent advances. Chem. Pap. 69, 1519–1531 (2015). https://doi.org/10.1515/chempap-2015-0166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0166

Keywords

Navigation