Skip to main content
Log in

Signaling axis in schwann cell proliferation and differentiation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Recent progress in molecular biology has markedly expanded our knowledge of the molecular mechanism behind the proliferation and differentiation processes of Schwann cells, the myelinforming cells in peripheral nervous systems. Intracellular signaling molecules participate in integrating various stimuli from cytokines and other humoral factors and control the transcriptional activities of the genes that regulate mitosis or differentiation. This article provides an overview of the roles played by the intracellular pathways regulating Schwann cell functions. In Schwann cell proliferation, cyclic adenosine monophosphate signals and mitogen-activated protein kinase pathways is regulated by various cytokines and extracellular matrix molecules. Specifically, platelet-derived growth factor, neuregulin, and insulin-like growth factor-I all are classified as ligands for receptor-type tyrosine kinase and activate common intracellular signaling cascades, mitogen-activated protein kinase pathways, and phosphatidylinositol-3-kinase pathways. The balance of activities between these two pathways appears crucial in regulating Schwann cell differentiation, in which phosphatidylinositol-3-kinase pathways promote myelin formation. Analysis of these signaling molecules in Schwann cells will enable us not only to understand their physiological development but also to innovate new approaches to treat disorders related to myelination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mirsky R. and Jessen K. R. (1996) Schwann cell development, differentiation and myelination. Curr. Opin. Neurobiol. 6, 89–96.

    Article  PubMed  CAS  Google Scholar 

  2. Mirsky R. and Jessen K. R. (2001) Embryonic and early postnatal development of Schwann cells. In: Glial Cell Development, 2nd ed., Jessen, K. R. and Richardson W. D., eds. New York: Oxford University Press, pp. 1–20.

    Google Scholar 

  3. Jessen K. R. and Mirsky R. (2002) Signals that determine Schwann cell identity. J. Anat. 200, 367–376

    Article  PubMed  CAS  Google Scholar 

  4. Topilko P., Schneider-Maunoury S., Levi G., et al. (1994) Krox-20 controls myelination in the peripheral nervous system. Nature 371, 796–799.

    Article  PubMed  CAS  Google Scholar 

  5. Jaegle M., Mandemakers W., Broos L., et al. (1996) The POU factor Oct-6 and Schwann cell differentiation. Science 273, 507–510.

    Article  PubMed  CAS  Google Scholar 

  6. Zorick T. S., Syroid D. E., Brown A., Gridley T., and Lemke G. (1999) Krox-20 controls SCIP expression, cell cycle exit and susceptibility to apoptosis in developing myelinating Schwann cells. Development 126, 1397–1406.

    PubMed  CAS  Google Scholar 

  7. Garratt A. N., Voiculescu O., Topilko P., Charnay P., and Birchmeier C. (2000) A dual role of erbB2 in myelination and in expansion of the schwann cell precursor pool. J. Cell Biol. 148, 1035–1046.

    Article  PubMed  CAS  Google Scholar 

  8. Feltri M. L., Graus Porta D., Previtali S. C., et al. (2002) Conditional disruption of beta 1 integrin in Schwann cells impedes interactions with axons. J. Cell Biol. 156, 199–209.

    Article  PubMed  CAS  Google Scholar 

  9. Wood P. M. and Bunge R. P. (1975) Evidence that sensory axons are mitogenic for Schwann cells. Nature 256, 662–664.

    Article  PubMed  CAS  Google Scholar 

  10. Raff M. C., Hornby-Smith A., and Brockes J. P. (1978) Cyclic AMP as a mitogenic signal for cultured rat Schwann cells. Nature 273, 672, 673

    Article  PubMed  CAS  Google Scholar 

  11. Brockes J. P., Fields K. L., and Raff M. C. (1979) Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. Brain Res. 165, 105–118.

    Article  PubMed  CAS  Google Scholar 

  12. Chin K. V., Yang W. L., Ravatn R., et al. (2002) Reinventing the wheel of cyclic AMP: novel mechanisms of cAMP signaling. Ann NY Acad. Sci. 968, 49–64.

    Article  PubMed  CAS  Google Scholar 

  13. Kim H. A., DeClue J. E., and Ratner N. (1997) cAMP-dependent protein kinase A is required for Schwann cell growth: interactions between the cAMP and neuregulin/tyrosine kinase pathways. J. Neurosci. Res. 49, 236–247.

    Article  PubMed  CAS  Google Scholar 

  14. Howe D. G. and McCarthy K. D. (2000) Retroviral inhibition of cAMP-dependent protein kinase inhibits myelination but not Schwann cell mitosis stimulated by interaction with neurons. J. Neurosci. 20, 3513–3521.

    PubMed  CAS  Google Scholar 

  15. Zwartkruis F. J. and Bos J. L. (1999) Ras and Rap1: two highly related small GTPases with distinct function. Exp. Cell Res. 253, 157–165.

    Article  PubMed  CAS  Google Scholar 

  16. Eldridge C. F., Bunge M. B., Bunge R. P., and Wood P. M. (1987) Differetiation of axon-related Schwann cells in vitro. I. Ascorbic acid regulates basal lamina assembly and myelin formation. J. Cell Biol. 105, 1023–1034.

    Article  PubMed  CAS  Google Scholar 

  17. Rahmatullah M., Schroering A., Rothblum K., Stahl R. C., Urban B., and Carey D. J. (1998) Synergistic regulation of Schwann cell proliferation by heregulin and forskolin. Mol. Cell Biol. 18, 6245–6252.

    PubMed  CAS  Google Scholar 

  18. Lee M. M., Badache A., and DeVries G. H. (1999) Phosphorylation of CREB in axon-induced Schwann cell proliferation. J. Neurosci. Res. 55, 702–712.

    Article  PubMed  CAS  Google Scholar 

  19. Cho-Chung Y. S., Clair T., Tortora G., and Yokozaki H. (1991) Role of site-selective cAMP analogs in the control and reversal of malignancy. Pharmacol. Ther. 50, 1–33.

    Article  PubMed  CAS  Google Scholar 

  20. Cheng L., Khan M., and Mudge A. W. (1995) Calcitonin gene-related peptide promotes Schwann cell proliferation. J. Cell Biol. 129, 789–796.

    Article  PubMed  CAS  Google Scholar 

  21. Stevens B., Ishibashi T., and Fields R. D. (2004) Effects of adenosine and growth factors on Schwann cell proliferation are context-dependent. Program No. 494.5, 2004 Abstract Viewer/Itinerary Planner. Washington, DC Society for Neuroscience.

    Google Scholar 

  22. Walikonis R. S. and Poduslo J. F. (1998) Activity of cyclic AMP phosphodiesterases and adenylyl cyclase in peripheral nerve after crush and permanent transection injuries. J. Biol. Chem. 273, 9070–9077.

    Article  PubMed  CAS  Google Scholar 

  23. Davis J. B. and Stroobant P. (1990) Plateletderived growth factors and fibroblast growth factors are mitogens for rat Schwann cells. Cell Biol. 110, 1353–1360.

    Article  CAS  Google Scholar 

  24. Lemke G. E. and Brockes J. P. (1984) Identification and purification of glial growth factor. J. Neurosci. 4, 75–83.

    PubMed  CAS  Google Scholar 

  25. Marchionni M. A., Goodearl A. D., Chen M. S., et al. (1993) Glial growth factors are alternatively spliced erbB2 ligands expressed in the nervous system. Nature 362, 312–318.

    Article  PubMed  CAS  Google Scholar 

  26. Garratt A. N., British S., and Birchmeier C. (2000) Neuregulin, a factor with many functions in the life of a schwann cell. Bioessays 22, 987–996.

    Article  PubMed  CAS  Google Scholar 

  27. Morris J. K., Lin W., Hauser C., Marchuk Y., Getman D., and Lee K. F. (1999) Rescue of the cardiac defect in ErbB2 mutant mice reveals essential roles of ErbB2 in peripheral nervous system development. Neuron 23, 273–283.

    Article  PubMed  CAS  Google Scholar 

  28. Hunter T. (1997) Oncoprotein networks. Cell 88, 333–346.

    Article  PubMed  CAS  Google Scholar 

  29. Zhang W. and Liu H. T. (2002) MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 12, 9–18.

    Article  PubMed  CAS  Google Scholar 

  30. Monje P. V., Bunge M. B., and Wood P. M. (2004) Cyclic AMP controls cell cycle progression by modulating the duration of MEK-ERK activation in Schwann cells. Program No. 148.10, 2004 Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience.

    Google Scholar 

  31. Voyvodic J. T. (1989) Target size regulates calibre and myelination of sympathetic axons. Nature 342, 430–433.

    Article  PubMed  CAS  Google Scholar 

  32. Einheber S., Hannocks M. J., Metz C. N., Rifkin D. B., and Salzer J. L. (1995) Transforming growth factor-beta 1 regulates axon/Schwann cell interactions. J. Cell Biol. 129, 443–458.

    Article  PubMed  CAS  Google Scholar 

  33. Arroyo E. J., Bermingham J. R. Jr., Rosenfeld M. G., and Scherer S. S. (1998) Promyelinating Schwann cells express Tst-1/SCIP/Oct-6. J. Neurosci. 18, 7891–7902.

    PubMed  CAS  Google Scholar 

  34. Stewart H. J., Bradke F., Tabernero A., Morrell D., Jessen K. R., and Mirsky R. (1996) Regulation of rat Schwann cell Po expression and DNA synthesis by insulin-like growth factors in vitro. Eur. J. Neurosci. 8, 553–564.

    Article  PubMed  CAS  Google Scholar 

  35. Russell J. W., Cheng H. L., and Golovoy D. (2000) Insulin-like growth factor-I promotes myelination of peripheral sensory axons. J. Neuropathol. Exp. Neurol. 59, 575–584.

    PubMed  CAS  Google Scholar 

  36. Ogata T., Lijima S., Hoshikawa S., et al. (2004) Opposing extracellular signal-regulated kinase and Akt pathways control schwann cell myelination. J. Neurosci. 24, 6724–6732.

    Article  PubMed  CAS  Google Scholar 

  37. Harrisingh M. C., Perez-Nadales E., Parkinson D. B., Malcolm D. S., Mudge A. W., and Lloyd A. C. (2004) The Ras/Raf/ERK signalling pathway drives Schwann cell dedifferentiation. EMBO J. 23, 3061–3071.

    Article  PubMed  CAS  Google Scholar 

  38. Basu T. N., Gutmann D. H., Fletcher J. A., Glover T. W., Collins F. S., and Downward J. (1992) Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature 356, 713–715.

    Article  PubMed  CAS  Google Scholar 

  39. Bermingham J. R. Jr., Shumas S., Whisenhunt T., Rosenfeld M. G., and Scherer S. S. (2001) Modification of representational difference analysis applied to the isolation of forskolin-regulated genes from Schwann cells. J. Neurosci. Res. 63, 516–524.

    Article  PubMed  CAS  Google Scholar 

  40. Katagiri H., Asano T., Ishihara H., et al. (1996) Overexpression of catalytic subunit p 110alpha of phosphatidylinositol 3-kinase increases glucose transport activity with translocation of glucose transporters in 3T3-L1 adipocytes. J. Biol. Chem. 271, 16,987–16,990.

    CAS  Google Scholar 

  41. Maurel P. and Salzer J. L. (2000) Axonal regulation of Schwann cell proliferation and survival and the initial events of myelination requires PI 3-kinase activity. J. Neurosci. 20, 4635–4645.

    PubMed  CAS  Google Scholar 

  42. Cohen P. and Frame S. (2001) The renaissance of GSK3. Nat. Rev. Mol. Cell Biol. 2, 769–776.

    Article  PubMed  CAS  Google Scholar 

  43. Fansa H., Schneider W., Wolf G., and Keilhoff G. (2002) Influence of insulin-like growth factor-I (IGF-I) on nerve auto grafts and tissue-engineered nerve grafts. Muscle Nerve 26, 87–93.

    Article  PubMed  CAS  Google Scholar 

  44. Michailov G. V., Sereda M. W., Brinkmann B. G., et al. (2004) Axonal neuregulin-1 regulates myelin sheath thickness. Sciece 304, 700–703.

    Article  CAS  Google Scholar 

  45. Schwab M. H., Michailov G. V., Brinkmann B. G., et al. (2004) A threshold level of Neuregulin-1 induces myelination. Program No. 494.11, 2004 Abstract Viewer/Itinerary Planner, Washington, DC: Society for Neuroscience.

    Google Scholar 

  46. Monuki E. S., Weinmaster G., Kuhn R., and Lemke G. (1989) SCIP: a glial POU domain gene regulated by cyclic AMP. Neuron 3, 783–793.

    Article  PubMed  CAS  Google Scholar 

  47. Morgan L., Jessen K. R., and Mirsky R. (1991) The effects of cAMP on differentiation of cultured Schwann cells: progression from an early phenotype (04+) to a myelin phenotype (PO+, GFAP-, N-CAM-NGF-receptor-) depends on growth inhibition. J. Cell Biol. 112, 457–467.

    Article  PubMed  CAS  Google Scholar 

  48. Ye P., Laszkiewicz I., Wiggins R. C., and Konat G. W. (1994) Transcriptional regulation of myelin associated glycoprotein gene expression by cyclic AMP. J. Neurosci. Res. 37, 683–690.

    Article  PubMed  CAS  Google Scholar 

  49. Gilmore T. D. (1999) The Rel/NF-kappaB signal transduction pathway: introduction. Oncogene 18, 6842–6844.

    Article  PubMed  CAS  Google Scholar 

  50. Nickols J. C., Valentine W., Kanwal S., and Carter B. D. (2003) Activation of the transcription factor NF-kappaB in Schwann cells is required for peripheral myelin formation. Nat. Neurosci. 6, 161–167.

    Article  PubMed  CAS  Google Scholar 

  51. Chan J. R., Cosgaya J. M., Wu Y. J. and Shooter E. M. (2001) Neurotrophins are key mediators of the myelination program in the peripheral nervous system. Proc. Natl. Acad. Sci. USA 98, 14,661–14,668.

    CAS  Google Scholar 

  52. Cosgaya J. M., Chan J. R., and Shooter E. M. (2002) The neurotrophin receptor p75NTR as a positive modulator of myelination. Science 298, 1245–1248.

    Article  PubMed  CAS  Google Scholar 

  53. Ye X., Mehlen P., Rabizadeh S., VanArsdale T., et al. (1999) TRAF family proteins interact with the common neurotrophin receptor and modulate apoptosis induction. J. Biol. Chem. 274, 30,202–30,208.

    CAS  Google Scholar 

  54. Helbling-Leclerc A., Zhang X., Topaloglu H., et al. (1995) Mutations in the laminin alpha 2-chain gene (LAMA2) cause merosin-deficient congenital muscular dystrophy. Nat. Genet. 11, 216–218.

    Article  PubMed  CAS  Google Scholar 

  55. Chen L. M., Bailey D., and Fernandez-Valle C. (2000) Association of beta 1 integrin with focal adhesion kinase and paxillin in differentiating Schwann cells. J. Neurosci. 20, 3776–3784.

    PubMed  CAS  Google Scholar 

  56. Guilbot A., Williams A., Ravise N., et al. (2001) A mutation in periaxin is responsible for CMT4F, an autosomal recessive form of Charcot-Marie-Tooth disease. Hum. Mol. Genet. 10, 415–421.

    Article  PubMed  CAS  Google Scholar 

  57. Gillespie C. S., Sherman D. L., Fleetwood-Walker S. M., et al. (2000) Peripheral demyelination and neuropathic pain behavior in periaxin-deficient mice. Neuron 26, 523–531.

    Article  PubMed  CAS  Google Scholar 

  58. Sherman D. L., Fabrizi C., Gillespie C. S., and Brophy P. J. (2001) Specific disruption of a schwann cell dystrophin-related protein complex in a demyelinating neuropathy. Neuron 30, 677–687.

    Article  PubMed  CAS  Google Scholar 

  59. McMorris F. A. and McKinnon R. D. (1996) Regulation of oligodendrocyte development and CNS myelination by growth factors: prospects for therapy of demyelinating disease. Brain Pathol. 6, 313–329.

    PubMed  CAS  Google Scholar 

  60. Ye P., Carson J., and D'Ercole A. J. (1995) In vivo actions of insulin-like growth factor-I(IGF-I) on brain myelination: studies of IGF-I and IGF binding protein-1 (IGFBP-1) transgenic mice. J. Neurosci. 15, 7344–7356.

    PubMed  CAS  Google Scholar 

  61. Ye P., Li L., Richards R. G., DiAugustine R. P., and D'Ercole A. J. (2002) Myelination is altered in insulin-like growth factor-I null mutant mice. J. Neurosci. 22, 6041–6051.

    PubMed  CAS  Google Scholar 

  62. Priyadarshini S., Flores A. I., and Macklin W. B. (2004) Overexpression of Akt1 in oligodendrocytes enhances myelination and regulates neuronal differentiation in vivo. Program No. 722.16, 2004 Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience.

    Google Scholar 

  63. Frank J. A., Richert N., Lewis B., et al. (2002) A pilot study of recombinant insulin-like growth factor-1 in seven multiple sderosis patients. Mult. Scler. 8, 24–29.

    Article  PubMed  CAS  Google Scholar 

  64. Halfpenny C., Benn T., and Scolding N. (2002) Cell transplantation, myelin repair, and multiple sclerosis. Lancet Neurol. 1, 31–40.

    Article  PubMed  Google Scholar 

  65. Bunge M. B. (2002) Bridging the transected or contused adult rat spinal cord with Schwann cell and olfactory ensheathing glia transplants. Prog. Brain Res. 137, 275–282.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakae Tanaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogata, T., Yamamoto, Si. & Tanaka, S. Signaling axis in schwann cell proliferation and differentiation. Mol Neurobiol 33, 51–61 (2006). https://doi.org/10.1385/MN:33:1:051

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:33:1:051

Index Entries

Navigation