Skip to main content
Log in

Signal-regulated ADF/cofilin activity and growth cone motility

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

It is becoming increasingly evident that proteins of the actin depolymerizing factor (ADF)/cofilin family are essential regulators of actin turnover required for many actin-based cellular processes, including motility. ADF can increase actin turnover by either increasing the rate of actin filament treadmilling or by severing actin filaments. In neurons ADF is highly expressed in neuronal growth cones and its activity is regulated by many signals that affect growth cone motility. In addition, increased activity of ADF causes an increase in neurite extension. ADF activity is inhibited upon phosphorylation by LIM kinases (LIMK), kinases activated by members of the Rho family of small GTPases. ADF become dephosphorylated downstream of signal pathways that activate PI-3 kinase or increase levels of intracellular calcium. The growth-regulating effects of ADF together with its ability to be regulated by a wide variety of guidance cues, suggest that ADF may regulate growth cone advance and navigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nobes C. D. and Hall A. (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62.

    Article  PubMed  CAS  Google Scholar 

  2. Luo L., Liao Y. J., Jan L. Y., and Jan Y. N. (1994) Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev. 8, 1787–1802.

    Article  PubMed  CAS  Google Scholar 

  3. Jin Z. and Strittmatter S. M. (1997) Rac1 mediates collapsin-1-induced growth cone collapse. J. Neurosci. 17, 6256–6263.

    PubMed  CAS  Google Scholar 

  4. Kuhn T. B., Brown M. D., and Bamburg J. R. (1998) Rac1-dependent actin filament organization in growth cones is necessary for beta1-integrin-mediated advance but not for growth on poly-D-lysine. J. Neurobiol. 37, 524–540.

    Article  PubMed  CAS  Google Scholar 

  5. Kuhn T. B., Brown M. D., Wilcox C. L., Raper J. A., and Bamburg J. R. (1999) Myelin and collapsin-1 induce motor neuron growth cone collapse through different pathways: inhibition of collapse by opposing mutants of rac1. J. Neurosci. 19, 1965–1975.

    PubMed  CAS  Google Scholar 

  6. Brown M. D., Cornejo B. J., Kuhn T. B., and Bamburg J. R. (2000) Cdc42 stimulates neurite outgrowth and formation of growth cone filopodia and lamellipodia. J. Neurobiol. 43, 352–364.

    Article  PubMed  CAS  Google Scholar 

  7. Song H. J. and Poo M. M. (1999) Signal transduction underlying growth cone guidance by diffusible factors. Curr. Opin. Neurobiol. 9, 355–363.

    Article  PubMed  CAS  Google Scholar 

  8. Bamburg J. R. (1999) Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Annu. Rev. Cell Dev. Biol. 15, 185–230.

    Article  PubMed  CAS  Google Scholar 

  9. Carlier M. F., Ressad F., and Pantaloni D. (1999) Control of actin dynamics in cell motility. Role of ADF/cofilin. J. Biol. Chem. 274, 33,827–33,830.

    Article  CAS  Google Scholar 

  10. Chen H., Bernstein B. W., and Bamburg J. R. (2000) Regulating actin-filament dynamics in vivo. Trends Biochem. Sci. 25, 19–23.

    Article  PubMed  CAS  Google Scholar 

  11. Mitchison T. J. and Cramer L. P. (1996) Actin-based cell motility and cell locomotion. Cell 84, 371–379.

    Article  PubMed  CAS  Google Scholar 

  12. Lewis A. K. and Bridgman P. C. (1992) Nerve growth cone lamellipodia contain two populations of actin filaments that differ in organization and polarity. J. Cell Biol. 119, 1219–1243.

    Article  PubMed  CAS  Google Scholar 

  13. Smith S. J. (1988) Neuronal cytomechanics: the actin-based motility of growth cones. Science 242, 708–715.

    Article  PubMed  CAS  Google Scholar 

  14. Lin C.-H. and Forscher P. (1995) Growth cone advance is inversely proportional to retrograde F-actin flow. Neuron 14, 763–771.

    Article  PubMed  CAS  Google Scholar 

  15. Forscher P. and Smith S. J. (1988) Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone. J. Cell Biol. 107, 1505–1516.

    Article  PubMed  CAS  Google Scholar 

  16. Bentley D. and Toroian-Raymond A. (1986) Disoriented pathfinding by pioneer neurone growth cones deprived of filopodia by cytochalasin treatment. Nature 323, 712–715.

    Article  PubMed  CAS  Google Scholar 

  17. Lin C.-H. and Forscher P. (1993) Cytoskeletal remodeling during growth cone-target interactions. J. Cell Biol. 121, 1369–1383.

    Article  PubMed  CAS  Google Scholar 

  18. O’Connor T. P. and Bentley D. (1993) Accumulation of actin in subsets of pioneer growth cone filopodia in response to neural and epithelial guidance cues in situ. J. Cell Biol. 123, 935–948.

    Article  PubMed  CAS  Google Scholar 

  19. Fan J., Mansfield S. G., Redmond T., Gordon-Weeks P. R., and Raper J. A. (1993) The organization of F-actin and microtubules in growth cones exposed to a brain-derived collapsing factor. J. Cell Biol. 121, 867–878.

    Article  PubMed  CAS  Google Scholar 

  20. Fritsche J., Reber B. F., Schindelholz B., and Bandtlow C. E. (1999) Differential cytoskeletal changes during growth cone collapse in response to hSema III and thrombin. Mol. Cell Neurosci. 14, 398–418.

    Article  PubMed  CAS  Google Scholar 

  21. Theriot J. A. and Mitchison T. J. (1991) Actin microfilament dynamics in locomoting cells. Nature 352, 126–131.

    Article  PubMed  CAS  Google Scholar 

  22. Borisy G. G. and Svitkina T. M. (2000) Actin machinery: pushing the envelope. Curr. Opin. Cell Biol. 12, 104–112.

    Article  PubMed  CAS  Google Scholar 

  23. Suter D. M. and Forscher P. (1998) An emerging link between cytoskeletal dynamics and cell adhesion molecules in growth cone guidance. Curr. Opin. Neurobiol. 8, 106–116.

    Article  PubMed  CAS  Google Scholar 

  24. Goldberg D. J., Foley M. S., Tang D., and Grabham P. W. (2000) Recruitment of the Arp2/3 complex and mena for the stimulation of actin polymerization in growth cones by nerve growth factor. J. Neurosci. Res. 60, 458–467.

    Article  PubMed  CAS  Google Scholar 

  25. Loisel T. P., Boujemaa R., Pantaloni D., and Carlier M. F. (1999) Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401, 613–616.

    Article  PubMed  CAS  Google Scholar 

  26. Lanier L. M., Gates M. A., Witke W., Menzies A. S., Wehman A. M., Macklis J. D., et al. (1999) Mena is required for neurulation and commissure formation. Neuron 22, 313–325.

    Article  PubMed  CAS  Google Scholar 

  27. Wills Z., Marr L., Zinn K., Goodman C. S., and Van Vactor D. (1999) Profilin and the Abl tyrosine kinase are required for motor axon outgrowth in the Drosophila embryo. Neuron 22, 291–299.

    Article  PubMed  CAS  Google Scholar 

  28. Banzai Y., Miki H., Yamaguchi H., and Takenawa T. (2000) Essential role of neural Wiskott-Aldrich syndrome protein in neurite extension in PC12 cells and rat hippocampal primary culture cells. J. Biol. Chem. 275, 11,987–11,992.

    Article  CAS  Google Scholar 

  29. Sobue K. and Kanda K. (1989) Alpha-actinins, calspectin (brain spectrin or fodrin), and actin participate in adhesion and movement of growth cones. Neuron 3, 311–319.

    Article  PubMed  CAS  Google Scholar 

  30. Bamburg J. R., McGough A., and Ono S. (1999) Putting a new twist on actin: ADF/cofilins modulate actin dynamics. Trends Cell Biol. 9, 364–370.

    Article  PubMed  CAS  Google Scholar 

  31. Iida K., Moriyama K., Matsumoto S., Kawasaki H., Nishida E., and Yahara I. (1993) Isolation of a yeast essential gene, COF1, that encodes a homologue of mammalian cofilin, a low-M(r) actin-binding and depolymerizing protein. Gene 124, 115–120.

    Article  PubMed  CAS  Google Scholar 

  32. Devineni N., Minamide L. S., Niu M., Safer D., Verma R., Bamburg J. R., and Nachmias V. T. (1999) A quantitative analysis of G-actin binding proteins and the G-actin pool in developing chick brain. Brain Res. 823, 129–140.

    Article  PubMed  CAS  Google Scholar 

  33. Meberg P. J., Ono S., Minamide L. S., Takahashi M., and Bamburg J. R. (1998) Actin depolymerizing factor and cofilin phosphorylation dynamics: response to signals that regulate neurite extension. Cell. Motil. Cytoskeleton. 39, 172–190.

    Article  PubMed  CAS  Google Scholar 

  34. Svitkina T. M. and Borisy G. G. (1999) Arp2/3 complex and ADF/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol. 145, 1009–1026.

    Article  PubMed  CAS  Google Scholar 

  35. Chan A. Y., Bailly M., Zebda N., Segall J. E., and Condeelis J. S. (2000) Role of cofilin in epidermal growth factor-stimulated actin polymerization and lamellipod protrusion. J. Cell Biol. 148, 531–542.

    Article  PubMed  CAS  Google Scholar 

  36. Bamburg J. R. and Bray D. (1987) Distribution and cellular localization of actin depolymerizing factor. J. Cell Biol. 105, 2817–2825.

    Article  PubMed  CAS  Google Scholar 

  37. Minamide L. S., Streigl A. M., Boyle J. A., Meberg P. J., and Bamburg J. R. (2000) Neurodegenerative stimuli induce persistent ADF/cofilin-actin rods that disrupt distal neurite function. Nature Cell Biol. 2, 628–636.

    Article  PubMed  CAS  Google Scholar 

  38. Moriyama K. and Yahara I. (1999) Two activities of cofilin, severing and accelerating directional depolymerization of actin filaments, are affected differentially by mutations around the actin-binding helix. EMBO J. 18, 6752–6761.

    Article  PubMed  CAS  Google Scholar 

  39. Morgan T. E., Lockerbie R. O., Minamide L. S., Browning M. D., and Bamburg J. R. (1993) Isolation and characterization of a regulated form of actin depolymerizing factor. J. Cell Biol. 122, 623–633.

    Article  PubMed  CAS  Google Scholar 

  40. Agnew B. J., Minamide L. S., and Bamburg J. R. (1995) Reactivation of phosphorylated actin depolymerizing factor and identification of the regulatory site. J. Biol. Chem. 270, 17,582–17,587.

    CAS  Google Scholar 

  41. Abe H., Obinata T., Minamide L. S., and Bamburg J. R. (1996) Xenopus laevis actin-depolymerizing factor/cofilin: a phosphorylation-regulated protein essential for development. J. Cell Biol. 132, 871–885.

    Article  PubMed  CAS  Google Scholar 

  42. Abe H., Verrastro T. A., Brown M. D., Minanide L. S., Caddoo W. S., Agnew B. J., et al. (1995) Xenopus development is dependent on upon the regulation of ADF/cofilin by phosphorylation. Mol. Biol. Cell Suppl. 6, 22a.

    Google Scholar 

  43. Moon A. and Drubin D. G. (1995) The ADF/cofilin proteins: stimulus-responsive modulators of actin dynamics. Mol. Biol. Cell 6, 1423–1431.

    PubMed  CAS  Google Scholar 

  44. Arber S., Barbayannis F. A., Hanser H., Schneider C., Stanyon C. A., Bernard O., and Caroni P. (1998) Regulation of actin dynamics through phosphorylation of cofilin by LIM- kinase. Nature 393, 805–809.

    Article  PubMed  CAS  Google Scholar 

  45. Yang N., Niguchi O., Ohashi K., Nagata K., Wada A., Kangawa K., Nishida E., and Mizuno K. (1998) Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393, 809–812.

    Article  PubMed  CAS  Google Scholar 

  46. Frangiskakis J. M., Ewart A. K., Morris C. A., Mervis C. B., Bertrand J., Robinson B. F., et al. (1996) LIM-kinase1 hemizygosity implicated in impaired visuospatial constructive cognition. Cell 86, 59–69.

    Article  PubMed  CAS  Google Scholar 

  47. Tassabehji M., Metcalfe K., Karmiloff-Smith A., Carette M. J., Grant J., Dennis N., et al. (1999) Williams syndrome: use of chromosomal microdeletions as a tool to dissect cognitive and physical phenotypes. Am. J. Hum. Genet. 64, 118–125.

    Article  PubMed  CAS  Google Scholar 

  48. Edwards D. C., Sanders L. C., Bokoch G. M., and Gill G. N. (1999) Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nature Cell Biol. 1, 253–259.

    Article  PubMed  CAS  Google Scholar 

  49. Maekawa M., Ishizaki T., Boku S., Watanabe N., Fujita A., Iwamatsu A., et al. (1999) Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285, 895–898.

    Article  PubMed  CAS  Google Scholar 

  50. Sumi T., Matsumoto K., Takai Y., and Nakamura T. (1999) Cofilin phosphorylation and actin cytoskeletal dynamics regulated by rho- and Cdc42-activated LIM-kinase 2. J. Cell Biol. 147, 1519–1532.

    Article  PubMed  CAS  Google Scholar 

  51. Ohashi K., Nagata K., Maekawa M., Ishizaki T., Narumiya S., and Mizuno K. (2000) Rho-associated kinase ROCK activates LIM-kinase 1 by phosphorylation at threonine 508 within the activation loop. J. Biol. Chem. 275, 3577–3582.

    Article  PubMed  CAS  Google Scholar 

  52. Luo L., Jan L., and Jan Y. N. (1996) Small GTPases in axon outgrowth. Perspect. Dev. Neurobiol. 4, 199–204.

    PubMed  CAS  Google Scholar 

  53. Jackson T. R., Blader I. J., Hammonds-Odie L. P., Burga C. R., Cooke F., Hawkins P. T., et al. (1996) Initiation and maintenance of NGF-stimulated neurite outgrowth requires activation of a phosphoinositide 3-kinase. J. Cell Sci. 109, 289–300.

    PubMed  CAS  Google Scholar 

  54. Rodriguez-Viciana P., Warne P. H., Khwaja A., Marte B. M., Pappin D., Das P., et al. (1997) Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 89, 457–467.

    Article  PubMed  CAS  Google Scholar 

  55. Jalink K., van Corven E. J., Hengeveld T., Morii N., Narumiya S., and Moolenaar W. H. (1994) Inhibition of lysophosphatidate-and thrombin-induced neurite retraction and neuronal cell rounding by ADP ribosylation of the small GTP-binding protein Rho. J. Cell Biol. 126, 801–810.

    Article  PubMed  CAS  Google Scholar 

  56. Tigyi G., Fischer D. J., Sebok A., Marshall F., Dyer D. L., and Miledi R. (1996) Lysophosphatidic acid-induced neurite retraction in PC12 cells: neurite- protective effects of cyclic AMP signaling. J. Neurochem. 66, 549–158.

    Article  PubMed  CAS  Google Scholar 

  57. Brown M. D. and Bamburg J. R. (1997) Regulation of the phosphorylation of Xenopus ADF/cofilin during cytokinesis by Rac1. Mol. Biol. Cell Suppl. 8, 366a.

    Google Scholar 

  58. Ridley A. J., Paterson H. F., Johnston C. L., Diekmann D., and Hall A. (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70, 401–410.

    Article  PubMed  CAS  Google Scholar 

  59. Peppelenbosch M. P., Qiu R. G., de Vries-Smits A. M., Tertoolen L. G., de Laat S. W., McCormick F., et al. (1995) Rac mediates growth factor-induced arachidonic acid release. Cell 81, 849–856.

    Article  PubMed  CAS  Google Scholar 

  60. Meberg P. J. and Bamburg J. R. (2000) Increase in neurite outgrowth mediated by overexpression of actin depolymerizing factor. J. Neurosci. 20, 2459–2469.

    PubMed  CAS  Google Scholar 

  61. Welnhofer E. A., Zhao L., and Cohan C. S. (1999) Calcium influx alters actin bundle dynamics and retrograde flow in Helisoma growth cones. J. Neurosci. 19, 7971–7982.

    PubMed  CAS  Google Scholar 

  62. Mallavarapu A. and Mitchison T. (1999) Regulated actin cytoskeleton assembly at filopodium tips controls their extension and retraction. J. Cell Biol. 146, 1097–1106.

    Article  PubMed  CAS  Google Scholar 

  63. Bradke F. and Dotti C. G. (1999) The role of local actin instability in axon formation. Science 283, 1931–1934.

    Article  PubMed  CAS  Google Scholar 

  64. Zheng J. Q., Felder M., Connor J. A., and Poo M. M. (1994) Turning of nerve growth cones induced by neurotransmitters. Nature 368, 140–144.

    Article  PubMed  CAS  Google Scholar 

  65. Zheng J. Q., Wan J. J., and Poo M. M. (1996) Essential role of filopodia in chemotropic turning of nerve growth cone induced by a glutamate gradient. J. Neurosci. 16, 1140–1149.

    PubMed  CAS  Google Scholar 

  66. Chang H. Y., Takei K., Sydor A. M., Born T., Rusnak F., and Jay D. G. (1995) Asymmetric retraction of growth cone filopodia following focal inactivation of calcineurin. Nature 376, 686–690.

    Article  PubMed  CAS  Google Scholar 

  67. Lehmann M., Fournier A., Selles-Navarro I., Dergham P., Sebok A., Leclerc N., Tigyi G., and McKerracher L. (1999) Inactivation of Rho signaling pathway promotes CNS axon regeneration. J. Neurosci. 19, 7537–7547.

    PubMed  CAS  Google Scholar 

  68. Wahl S., Barth H., Ciossek T., Aktories K., and Mueller B. K. (2000) Ephrin-A5 induces collapse of growth cones by activating Rho and Rho kinase. J. Cell Biol. 149, 263–270.

    Article  PubMed  CAS  Google Scholar 

  69. McGough A., Pope B., Chiu W., and Weeds A. (1997) Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J. Cell Biol. 138, 771–781.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meberg, P.J. Signal-regulated ADF/cofilin activity and growth cone motility. Mol Neurobiol 21, 97–107 (2000). https://doi.org/10.1385/MN:21:1-2:097

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:21:1-2:097

Index Entries

Navigation