Skip to main content
Log in

Effects of supplementation with a combination of cobalt and ascorbic acid on antioxidant enzymes and lipid peroxidation levels in streptozocin-diabetic rat liver

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The effect of cobalt(II) chloride (CoCl2) and CoCl2 with ascorbic acid (AA) on components of the antioxidant defense system and lipid oxidative damage were studied in controls and streptozotocin-induced diabetic rat livers. Three days after injection, rats received either 0.5 mM CoCl2 or 0.5 mM CoCl2 with a combination of 1 g/L AA in drinking water up to 6 wk. The elevated blood glucose levels in diabetic rats were about 12% restored by oral administration of CoCl2 (0.05 mM) and were significant reduced (46%) following AA addition (1 g/L) to CoCl2. Cobalt therapy effectively decreased the increased activities of catalase (CAT), superoxide dismutase (SOD), and thiobarbituric acid reactant substances (TBARS) but could not restore the increased glutathione peroxidase (GSH-Px) in the liver of diabetic rats. Our findings suggest that cobalt therapy may prove effective in improving the impaired antioxidant status during the early state of diabetes, and ascorbic acid supplementation at this dose potentiates the effectiveness of cobalt action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. H. Cheeseman and T. F. Slater, An introduction to free radical biochemistry, Br. Med. Bull. 49(3), 481–493 (1993).

    PubMed  CAS  Google Scholar 

  2. J. J. Zimmerman, Oxyradical pathophysiology, Adv. Pediatr. 42, 243–285 (1995).

    PubMed  CAS  Google Scholar 

  3. B. Halliwell, Antioxidant and human disease: a general introduction, Nutr. Rev. 55(1), S44–S52 (1997).

    Article  PubMed  CAS  Google Scholar 

  4. J. W. Baynes and S. Thorne, Role of oxidative stress diabetic complications: a new perspective on an old paradigm, Diabetes 48, 1–9 (1999).

    Article  PubMed  CAS  Google Scholar 

  5. S. P. Wolff, Diabetes mellitus and free radicals, Br. Med. Bull. 49(3), 642–652 (1993).

    PubMed  CAS  Google Scholar 

  6. R. Crouch, G. Kimsey, D. G. Priest, A. Sarda, and M. G. Buse, Effect of streptozotocin on erythrocyte and retinal superoxide dismutase, Diabetologia 15, 53–57 (1978).

    Article  PubMed  CAS  Google Scholar 

  7. M. S. Paller, J. R. Hoidal, and T. F. Ferris, Oxygen free radicals in ischemic acute renal failure in the rat, J. Clin. Invest. 74, 1156–1164 (1984).

    Article  PubMed  CAS  Google Scholar 

  8. G. L. King and M. Brownlee, The molecular and molecular mechanisms of diabetic complications, Endocrinol. Metab. Clin. North Am. 25(2), 255–270 (1996).

    Article  PubMed  CAS  Google Scholar 

  9. T. K. Basu, W. J. Tze, and J. Leichter, Serum vitamin A and retinol-binding protein in patients with insulin-dependent diabetes mellitus, Am. J. Clin. Nutr. 50, 329–331 (1989).

    PubMed  CAS  Google Scholar 

  10. W. A. Behrens and R. Madere, Vitamin C and vitamin E status in the spontaneously diabetic BB rat before the onset of diabetes. Metabolism 40(1), 72–76 (1991).

    Article  PubMed  CAS  Google Scholar 

  11. Y. Aoki, Y. Yanagisawa, K. Yazaki, H. Oguchi, K. Kiyosawa, and S. Furuta, Protective effect of vitamin E supplementation on increased thermal stability of collagen in diabetic rats, Diabetologia 35, 913–916 (1992).

    Article  PubMed  CAS  Google Scholar 

  12. B. Caballero, Vitamin E improves the action of insulin, Nutr. Rev. 51(11), 339–340 (1993).

    Article  PubMed  CAS  Google Scholar 

  13. C. M. Siman and U. J. Eriksson, Vitamin C supplementation of the maternal diet reduces the rate of malformation in the offspring of diabetic rats, Diabetologia 40, 1416–1424 (1997).

    Article  PubMed  CAS  Google Scholar 

  14. J. J. Cunningham, Altered vitamin C transport in diabetes mellitus, Med. Hypotheses 26, 263–265 (1988).

    Article  PubMed  CAS  Google Scholar 

  15. J. J. Cunningham, The glucose/insulin system and vitamin C: implications in insulin-dependent diabetes mellitus, J. Am. Coll. Nutr. 17(2), 105–108 (1998).

    PubMed  CAS  Google Scholar 

  16. P. Preziosi, P. Galan, B. Herbert, P. Valeix, A-M. Roussel, D. Malvy, et al., Effects of supplementation with a combination of antioxidant vitamins and trace elements, at nutritional doses, on biochemical indicators and markers of the antioxidant system in adult subjects, J. Am. Coll. Nutr. 17(3), 244–249 (1998).

    PubMed  CAS  Google Scholar 

  17. E. L. B. Novelli and N. L. Rodrigues, Effect of nickel chloride on streptozotocin-induced diabetes in rats, Can. J. Physiol. Pharmacol. 66, 663–665 (1988).

    PubMed  CAS  Google Scholar 

  18. A. Shisheva, D. Gefel, and Y. Shechter, Insulinlike effects of zinc in vitro and in vivo, Diabetes 41, 982–988 (1992).

    Article  PubMed  CAS  Google Scholar 

  19. M. J. Abrams and B. A. Murrer, Metal compounds in therapy and diagnosis, Science 261, 725–730 (1993).

    Article  PubMed  CAS  Google Scholar 

  20. S. M. Brichard and J. C. Henquin, The role of vanadium in the management of diabetes, TiPS 16, 265–270 (1995).

    PubMed  CAS  Google Scholar 

  21. T. A. Özçelikay, D. J. Becker, L. N. Ongemba, A.-M. Pottier, J.-C. Henquin, and S. M. Brichard, Improvement of glucose and lipid metabolism in diabetic rats treated with molybdate, Am. J. Physiol. 270, E344–E352 (1996).

    PubMed  Google Scholar 

  22. F. Saker, J. Ybarra, P. Leahy, R. W. Hanson, S. C. Kalhan, and F. Ismail-Beigi, Glycemia-lowering effect of cobalt chloride in the diabetic rat: role of decreased gluconeogenesis, Am. J. Physiol. 274, E984–E991 (1998).

    PubMed  CAS  Google Scholar 

  23. R. P. Eaton, Cobalt chloride-induced hyperlipemia in the rat: effects on intermediary metabolism, Am. J. Physiol. 222(6), 1550–1557 (1972).

    PubMed  CAS  Google Scholar 

  24. J. Ybarra, A. Behrooz, A. Gabriel, M. H. Köseoglu, and F. Ismail-Beigi, Glycemia-lowering effect of cobalt chloride in the diabetic rat: increased GLUT1 mRNA expression, Mol. Cell. Endocrinol. 133, 151–160 (1997).

    Article  PubMed  CAS  Google Scholar 

  25. O. H. Lowry, N. J. Rosenbrough, A. L. Farr, and R. F. J. Randal, Protein measurement with the folin-phenol reagent, Biol. Chem. 193, 265–275 (1951).

    CAS  Google Scholar 

  26. H. E. Aebi, Catalase, in Methods of Enzymatic Analysis, 3rd ed., H. U. Bergmeyer, ed., Verlag Chemie, Deerfied Beach, FL, pp. 273–286 (1987).

    Google Scholar 

  27. R. A. Lawrence and R. F. Burk, Glutathione peroxidase activity in selenium-deficient rat liver, Biochem. Biophys. Res. Commun. 71(4), 952–958 (1976).

    Article  PubMed  CAS  Google Scholar 

  28. V. A. Kostyuk and A. I. Potapovich, Superoxide-driven oxidation of quercetin and a simple sensitive assay for determination of superoxide dismutase, Biochem. Int. 19(5), 1117–1124 (1989).

    PubMed  CAS  Google Scholar 

  29. M. Uchiyama and M. Mihara, Determination of malondaldehyde precursor in tissues by thiobarbituric acid test, Anal. Biochem. 86, 271–278 (1978).

    Article  PubMed  CAS  Google Scholar 

  30. P. György and W. N. Pearson, The Vitamins, 2nd ed., Academic New York, Vol. 7, pp. 27–44 (1967).

    Google Scholar 

  31. R. Kakkar, S. V. Mantha, J. Radhi, K. Prasad, and J. Kalra, Increased oxidative stress in rat liver and pancreas during progression of streptozotocin-induced diabetes, Clin. Sci. 94, 623–632 (1998).

    PubMed  CAS  Google Scholar 

  32. R. Meneghini, Genotoxicity of active oxygen species in mammalian cells, Mutat. Res. 195, 215–230 (1988).

    CAS  Google Scholar 

  33. P.M. Hanna, M. B. Kaduska, and R. P. Mason, Oxygen-derived free radical and active oxygen complex formation from cobalt (II) chelates in vitro, Chem. Res. Toxicol. 5, 109–115 (1992).

    Article  PubMed  CAS  Google Scholar 

  34. G. V. Mann, Hypothesis: the role of vitamin C in the diabetic angiopathy, Perspect. Biol. Med. 17, 210–217 (1974).

    PubMed  CAS  Google Scholar 

  35. D. K. Yue, S. McLennon, and E. Fisher, Ascorbic acid status and polyol pathway in diabetes, Diabetes 38, 257–261 (1989).

    Article  PubMed  CAS  Google Scholar 

  36. D. Horning, Distribution of ascorbic acid, metabolism and analogus in man and animals, Ann. NY Acad. Sci. 258, 103–118 (1975).

    Article  Google Scholar 

  37. M. S. Chen, M. L. Hutchinson, R. E. Pecoraro, W. Y. L. Lee, and R. F. Labbe, Hyperglycemia-induced intracellular depletion of ascorbic acid in human mononuclear leukocytes, Diabetes 32, 1078–1081 (1983).

    Article  PubMed  CAS  Google Scholar 

  38. A. D. Moordian, The effect of ascorbate and dehydroascorbate on tissue uptake of glucose, Diabetes 36, 1001–1004 (1987).

    Article  Google Scholar 

  39. M. S. Yew, Effect of streptozotocin diabetes on tissue ascorbic acid and dehydroascorbic acid, Horm. Metab. Res. 15, 158 (1983).

    Article  PubMed  CAS  Google Scholar 

  40. Y. Sato, N. Hotta, N. Sakamoto, S. Matsuoka, N. Ohiski, and K. Yagi, Lipid peroxide level in plasma of diabetic patients, Biochem. Med. 21, 104–107 (1979).

    Article  PubMed  CAS  Google Scholar 

  41. G. Shah, J. L. Pinnas, C. C. Lung, S. Mahmoud, and A. D. Mooradian, Tissue-specific distribution of malondialdehyde modified proteins in diabetes mellitus, Life Sci. 55(17), 1343–1349 (1994).

    Article  PubMed  CAS  Google Scholar 

  42. Ç. Inan, K. Kilinç, E. Kotiloglu, H. O. Akman, I. Kiliç, and J. Michl, Antioxidant therapy of cobalt and vitamin E in hemosiderosis, J. Lab. Clin. Med. 132, 157–165 (1998).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yildirim, Ö., Büyükbingöl, Z. Effects of supplementation with a combination of cobalt and ascorbic acid on antioxidant enzymes and lipid peroxidation levels in streptozocin-diabetic rat liver. Biol Trace Elem Res 90, 143–154 (2002). https://doi.org/10.1385/BTER:90:1-3:143

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:90:1-3:143

Index Entries

Navigation