Skip to main content
Log in

Optimal conditions for alkaline detoxification of dilute-acid lignocellulose hydrolysates

  • Session 2 Today's Biorefineries
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Alkaline detoxification strongly improves the fermentability of dilute-acid hydrolysates in the production of bioethanol from lignocellulose with Saccharomyces cerevisiae. New experiments were performed with NH4OH and NaOH to define optimal conditions for detoxification and make a comparison with Ca(OH)2 treatment feasible. As too harsh conditions lead to sugar degradation, the detoxification treatments were evaluated through the balanced ethanol yield, which takes both the ethanol production and the loss of fermentable sugars into account. The optimization treatments were performed as factorial experiments with 3-h duration and varying pH and temperature. Optimal conditions were found roughly in an area around pH 9.0/60°C for NH4OH treatment and in a narrow area stretching from pH 9.0/80°C to pH 12.0/30°C for NaOH treatment. By optimizing treatment with NH4OH, NaOH, and Ca(OH)2, it was possible to find conditions that resulted in a fermentability that was equal or better than that of a reference fermentation of a synthetic sugar solution without inhibitors, regardless of the type of alkali used. The considerable difference in the amount of precipitate generated after treatment with different types of alkali appears critical for industrial implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Larsson, S., Reimann, A., Nilvebrant, N.-O., and Jönsson, L. J. (1999), Appl. Biochem. Biotechnol. 77–79, 91–103.

    Article  Google Scholar 

  2. Martinez, A., Rodriguez, M. E., York, S. W., Preston, J. F., and Ingram, L.-O. (2000), Biotechnol. Bioeng. 69, 526–536.

    Article  CAS  Google Scholar 

  3. Martinez, A., Rodriguez, M. E., Wells, M. L., York, S. W., Preston, J. F., and Ingram, L. O. (2001), Biotechnol. Prog. 17, 287–93.

    Article  CAS  Google Scholar 

  4. Persson, P., Andersson, J., Gorton, L., Larsson, S., Nilvebrant, N.-O., and Jönsson, L. J. (2002), J. Agric. Food Chem. 50, 5318–5325.

    Article  CAS  Google Scholar 

  5. Millati, R., Niklasson, C., and Taherzadeh, M. J. (2002), Process Biochem. 38, 515–522.

    Article  CAS  Google Scholar 

  6. Sárvári Horváth, I., Sjöde, A., Alriksson, B., Jönsson, L. J., and Nilvebrant, N.-O. (2005), Appl. Biochem. Biotechnol. 121–124, 1031–1044.

    Article  Google Scholar 

  7. Nigam, J. N. (2001), J. Biotechnol. 87, 17–27.

    Article  CAS  Google Scholar 

  8. Alriksson, B., Sárvári Horváth, I., Sjöde, A., Nilvebrant, N.-O., and Jönsson, L. J. (2005), Appl. Biochem. Biotechnol. 121–124, 911–922.

    Article  Google Scholar 

  9. Nilvebrant, N.-O., Reimann, A., Larsson, S., and Jönsson, L. J. (2001), Appl. Biochem. Biotechnol. 91–93, 35–49.

    Article  Google Scholar 

  10. Nilvebrant, N.-O., Persson, P., Reimann, A., de Sousa, F., Gorton, L., and Jönsson, L. J. (2003), Appl. Biochem. Biotechnol. 105–108, 615–628.

    Article  Google Scholar 

  11. Sárvári Horváth, I., Sjöde, A., Nilvebrant, N.-O., Zagorodni, A., and Jönsson, L. J. (2004), Appl. Biochem. Biotechnol. 114, 525–538.

    Article  Google Scholar 

  12. Singleton, V. L., Orhofer, R., and Lamuela-Raventos, R. M. (1999), Methods Enzymol. 299, 152–178.

    Article  CAS  Google Scholar 

  13. Larsson, S., Palmqvist, E., Hahn-Hägerdal, B., et al. (1999), Enzyme Microb. Technol. 24, 151–159.

    Article  CAS  Google Scholar 

  14. Verduyn, C., Postma, E., Scheffer, W. A., and van Dijken, J. P. (1992) Yeast 8, 501–517.

    Article  CAS  Google Scholar 

  15. Taherzadeh, M. J., Niklasson, C., and Lidén, G. (1997), Chem. Eng. Sci. 52, 2653–2659

    Article  CAS  Google Scholar 

  16. Lawford, H. G. and Rousseau J.D. (2003), Appl. Biochem. Biotechnol. 106, 457–470.

    Article  Google Scholar 

  17. de Bruijn, J. M., Kieboom, A. P. G., van Bekkum, H., and van der Poel, P. W. (1986) Sugar Technol. Rev. 13, 21–52.

    Google Scholar 

  18. Van Zyl, C., Prior, B. A., and Du Preez, J. C. (1988), Appl. Biochem. Biotechnol. 17, 357–369.

    Google Scholar 

  19. Taherzadeh, M. J., Eklund, R., Gustafsson, L. C., and Lidén, G. (1997) Ind. Eng. Chem. Res. 36, 4659–4665.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Alriksson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alriksson, B., Sjöde, A., Nilvebrant, NO. et al. Optimal conditions for alkaline detoxification of dilute-acid lignocellulose hydrolysates. Appl Biochem Biotechnol 130, 599–611 (2006). https://doi.org/10.1385/ABAB:130:1:599

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:130:1:599

Index Entries

Navigation