Skip to main content
Log in

Molecular characterization of cDNA encoding resistance gene-like sequences in Buchloe dactyloides

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Current knowledge of resistance (R) genes and their use for genetic improvement in buffalograss (Buchloe dactyloides [Nutt.] Engelm.) lag behind most crop plants. This study was conducted to clone and characterize cDNA encoding R gene-like (RGL) sequences in buffalograss. This report is the first to clone and characterize of buffalograss RGLs. Degenerate primers designed from the conserved motifs of known R genes were used to amplify RGLs and fragments of expected size were isolated and cloned. Sequence analysis of cDNA clones and analysis of putative translation products revealed that most encoded amino acid sequences shared the similar conserved motifs found in the cloned plant disease resistance genes PRS2, MLA6, L6, RPMI, and Xa1. These results indicated diversity of the R gene candidate sequences in buffalograss. Analysis of 5′ rapid amplification of cDNA ends (RACE), applied to investigate upstream of RGLs, indicated that regulatory sequences such as TATA box were conserved among the RGLs identified. The cloned RGL in this study will further enhance our knowledge on organization, function, and evolution of R gene family in buffalo grass. With the sequences of the primers and sizes of the markers provided, these RGL markers are readily available for use in a genomics-assisted selection in buffalograss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wenger, L. E. (1943) Buffalograss. Kansas Agr. Expt. Sta. Bul. 321, 1–78.

    Google Scholar 

  2. Beard, J.B. (1973) Turfgrass: science and culture. Prentice-Hall, Englewood Cliffs NJ.

    Google Scholar 

  3. Riordan, T. (1991) Buffalograss. Grounds Maint. 26, 12–14.

    Google Scholar 

  4. Baxendale, F. P., Heng-Moss, T. M., and Riordan, T. P. (1999). Blissus occiduus (Hemiptera: Lygaeidae): a chinch bug pest new to buffalograss turf. J. Econ. Entomol. 92, 1172–1176.

    Google Scholar 

  5. Johnson-Cicalese, J. M., Baxendale, F. P., Riordan, T. P., and Heng-Moss, T. M. (1998) Identification of mealybug (Homoptera: Pseudococcidae) resistant turf-type buffalograss germplasm. J. Econ. Entomol. 91, 340–346.

    Google Scholar 

  6. Schuler, T. H. and Poppy, G. M. (1998) Insect-resistant transgenic plants. Tibtech 16, 168–175.

    CAS  Google Scholar 

  7. Budak, H., Shearman, R. C., and Dweikat, I. (2004) Cloning and characterization of resistance gene like sequences in warm season turf grass species. Proceedings of the International Conference on Mathematics and Engineering Techniques in Medicine and Biological Science, Las Vegas, NV, pp. 225–230.

  8. Flor, H. H. (1971) Current status of the gene for gene concept. Annu. Rev. Phytopathol. 9, 275–296.

    Article  Google Scholar 

  9. Keen, N. T. (1990) Gene-for-gene complimentary in plant-pathogen interactions. Annu. Rev. Genet. 24, 447–463.

    Article  PubMed  CAS  Google Scholar 

  10. Islam, M. R. and Mayo, G. M. E. (1990) A compendium on host genes in flax conferring resistance to flax rust. Plant Breeding 104, 89–100.

    Article  Google Scholar 

  11. Islam, M. R. and Shepherd, K. W. (1991) Present status of genetic of rust resistance in flax. Euphytica 55, 255–268.

    Article  Google Scholar 

  12. Hulbert, S. H., Webb, C. A., Smith, S. M., and Sun, Q. (2001) Resistance gene complexes: evolution and utilization. Annu. Rev. Phytopathol. 39, 285–312.

    Article  PubMed  CAS  Google Scholar 

  13. Hammond-Kosack K. and Jones, J. (1997) Plant disease resistance genes. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 575–608.

    Article  PubMed  CAS  Google Scholar 

  14. Richter, T. E. and Ronald, P. C. (2000) The evolution of disease resistance genes. Plant Mol. Biol. 42, 195–204.

    Article  PubMed  CAS  Google Scholar 

  15. Baker, B., Zambryski, P., Staskawicz, B., and DineshKumar S. P. (1997) Signaling in plant-microbe interactions. Science 276, 726–733.

    Article  PubMed  CAS  Google Scholar 

  16. Saraste M., Sibbald, P. R., and Wittinghofer, A. (1990) The P-loop—acommon motif in ATP-and GTP-binding proteins. Trends Biochem. Sci. 15, 430–434.

    Article  PubMed  Google Scholar 

  17. Tameling, W. I., Elzinga, S. D., Darmin, P. S., et al. (2002) The tomato R gene product 1-2 and MI-1 are functional ATP binding proteins with ATPase activity. Plant Cell 14, 2929–2939.

    Article  PubMed  CAS  Google Scholar 

  18. Jones, D. A. and Jones, J. D. G. (1997) The role of leucine-rich repeats proteins in plant defenses. Adv. Bot. Res. 24, 89–167.

    Article  Google Scholar 

  19. Kajava, A. V. (1998) Structural diversity of leucinerich repeat proteins. J. Mol. Biol. 277, 519–527.

    Article  PubMed  CAS  Google Scholar 

  20. Liu, J. J. and Ekramoddoullah, A. K. M. (2003) Isolation, genetic variation and expression of TIR-NBS-LRR resistance gene analogs from western while pine (Pinus monticola Dougl. ex. D. Don.). Mol. Gen. Genomics 270, 432–441.

    Article  CAS  Google Scholar 

  21. Meyers, B. C., Dickerman, A. W., Michelmore, R. W., Sivaramakrishnan, S., Sobral, B. W., and Young, N. D. (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J. 20, 317–332.

    Article  PubMed  CAS  Google Scholar 

  22. Pan, Q., Liu, Y. S., Budai-Hadrian, O., et al. (2000) Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and Arabidopsis. Genetics 155, 309–322.

    PubMed  CAS  Google Scholar 

  23. Cannon, S. B., Zhu, H., Baumgarten, A. M., Spangler, R., May, G., Cook, D. R., and Young, N.D. (2002) Diversity, distribution, and ancient taxonomic relationships within the TIR and non-TIR NBS-LRR resistance gene subfamilies. J. Mol. Evol. 54, 548–562.

    Article  PubMed  CAS  Google Scholar 

  24. Donald, T. M., Pellerone, F., Adam-Blondon, A.-F. Boquet, A., Thomas, M. R., and Dry, I. B. (2002) Identification of resistance gene analogs linked to a powdery mildew resistance locus in grapevine. Theor. Appl. Genet. 104, 610–618.

    Article  PubMed  CAS  Google Scholar 

  25. Kanazin, V., Marek, L. F., and Shoemaker, R. C. (1996) Resistance gene analogs are conserved and clustered in soybean. Proc. Nat. Acad. Sci. USA 93, 11746–11750.

    Article  PubMed  CAS  Google Scholar 

  26. Yu, Y. G., Bussand, G. R., and Maroof, M. A. (1996) Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. Proc. Natl. Acad. Sci. USA 93, 11,751–11,756.

    Article  CAS  Google Scholar 

  27. Reeder, J. R. (1971) Notes on Mexican grasses IX. Miscellaneous chromosome numbers. Brittonia 23, 105–117.

    Article  Google Scholar 

  28. Huff, D. R., Peakall, R., and Smouse, P. E. (1993) RAPD variation within and among natural populations of outcrossing buffalograss [Buchloe dactyloides(Nutt.) Engelm.]. Theor. Appl. Genet. 86, 927–934.

    Article  CAS  Google Scholar 

  29. Johnson, P. G., Riordan, T. P., and Arumuganathan, K. (1998) Ploidy level determinations in buffalograss clones and populations. Crop Sci. 38, 478–482.

    Article  Google Scholar 

  30. Johnson, P. G. and Riordan, T. P. (2001) Effect of unbalanced chromosome number and inbreeding on fertility and plant vigor in buffalograss. Intl. Turf. Res. J. 9, 176–179.

    Google Scholar 

  31. Budak, H., Sherman, R. C., Parmaksiz, I., Guassoin, R. E., Riordan, T. P., and Dweikat, I. (2004) Molecular characterization of buffalograss germplasm using sequence related amplified polymorphism markers. Theor. Appl. Genet. 108, 328–334.

    Article  PubMed  CAS  Google Scholar 

  32. Budak, H., Shearman, R. C., Parmaksiz, I., and Dweikat, I. (2004) Comparative analysis of seeded and vegetative biotype buffalograsses based on phylogenetic relationship using using ISSRs, SSRs, RAPDs, SRAPs. Theor. Appl. Genet. 109, 280–288.

    Article  PubMed  CAS  Google Scholar 

  33. Altschul, S. F., Madden, T. L., Schaffer, A. A., et al. (1997) Gappel BL AST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  34. Badak, H., Shearman, R. C., and Dweikat, I. (2005) Comparative sequence analysis to identify functional elements for functional genomics. Proceedings of the International Conference on Mathematics and Engineering Techniques in Medicine and Biological Science, Las Vegas, NV, pp 3–7.

  35. Traul, T. W. (1994) The functions and consensus motifs of nine types of peptide segments that form different types of nucleotide binding sites. Eur. J. Biochem. 222, 9–19.

    Article  Google Scholar 

  36. Kinoshita, K., Sdanami, K., Kidera, A., and Go, N. (1999) Structural motif of phosphate binding site common to various protein super families: all against all structural comparison of protein mononucleotide complexes. Protein Eng. 12, 11–14.

    Article  PubMed  CAS  Google Scholar 

  37. Meyers, B. C., Kozik, A., Griego, A., Kuang, H., and Michelmore, R. W. (2003) Genome wide analysis of NBS-LRR encoding genes in Arabidopsis. Plant Cell 15, 809–834.

    Article  PubMed  CAS  Google Scholar 

  38. Parniske, M., Hammond-Kossack, K. E., Golstein, C., et al. (1997) Novel disease resistance specificities result from the sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato. Cell 91, 821–832.

    Article  PubMed  CAS  Google Scholar 

  39. Song, W. Y., Pi, L. Y., Wang, G. L., Gardner, J., Holsten, T., and Ronal, P. C. (1997) Evolution of the rice Xa21 disease resistance gene family. Plant Cell 9, 1279–1287.

    Article  PubMed  CAS  Google Scholar 

  40. Meyers, B. C., Shen, K. A., Rohani, P., Gaut, B., and Michelmore, R. W. (1998) Receptor like genes in the major resistance locus of lettuce are subject to divergent selection. Plant Cell 10, 1833–1846.

    Article  PubMed  CAS  Google Scholar 

  41. Shen, K. A., Chin, D. B., Arroyo-Garcia, R., Ochoa, O. E., and Lavelle, D. O. (2002) Dm3 isone member of a large constituvely expressed family of nucleotide binding site-leucine rich repeat encoding genes. Mol. Plant Microbe Interact 15, 251–261.

    Article  PubMed  Google Scholar 

  42. Seah, S., Bariana, H., Jahier, J., Sivasithamparam, K., and Lagudah, E. S. (2001) Cloning and characterization a family of disease resistance gene analogs from wheat and barley. Theor. Appl. Genet. 97, 937–945.

    Article  Google Scholar 

  43. Zhang, L. P., Khan, A., Nino-Liu, D., and Foolad, M. R. (2002) A molecular linkage map of tomato displaying chromosomal locations of resistance gene analogs based on a Lhcopersicon esculantum x Lycopersicon hiersutum cross. Genome 45, 133–146.

    Article  PubMed  CAS  Google Scholar 

  44. Lopez, C. E., Acosta, I. F., Jara, C., et al. (2003) Identifying resistance gene analogs associated with the resistance to different pathogens in common bean. Phytopathology 93, 88–95.

    Article  CAS  PubMed  Google Scholar 

  45. Ramalingam, J., Vera-Cruz, C. M., Kukreja, K., et al. (2003) Candid ate defense genes from rice, barley and maize and their association with qualitative and quantitative resistance in rice. Mol. Plant Microbe Interact. 16, 14–24.

    Article  PubMed  CAS  Google Scholar 

  46. Lagudah, E. S., Moullet, O., and Appels, R. (1997) Map-based cloning of a gene sequence encoding a nucleotide-binding domain and a leucine-rich region at the Cre3 nematode resistance locus of wheat. Genome 40, 659–665.

    PubMed  CAS  Google Scholar 

  47. Halterman, D., Zhou, D., Wei, F., Wise, R. P., and Schulze-Lefert, P. (2001) The MLA6 coiled-coil, NBS-LRR protein confers AvrMIa6-dependent resistance specificity to Blumeria graminis f. sp. hordei in barley and wheat. Plant J. 25, 335–348.

    Article  PubMed  CAS  Google Scholar 

  48. Yoshimura, S., Yamanouchi, U., Katayose, Y., et al. (1998) Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc. Natl. Acad. Sci. USA 95, 1663–1668.

    Article  PubMed  CAS  Google Scholar 

  49. Sakamoto, K., Tada, Y., Yokozeki, Y., et al. (1999) Chemical induction of disease resistance in rice is correlated with the expression of a gene encoding a nucleotide binding site and leucine-rich repeats. Plant Mol. Biol. 40, 847–855.

    Article  PubMed  CAS  Google Scholar 

  50. Botella, M. A., Coleman, M. J., Hughes, D. E., Nishimura, M. T., Jones, J. D., and Somerville, S. C. (1997) Map positions of 47 Arabidopsis sequences with sequence similarity to disease resistance genes. Plant J. 12, 1197–1211.

    Article  PubMed  CAS  Google Scholar 

  51. Bent, A. F., Kunkel, B. N., Dahlbeck, D., et al. (1994) RPS2 of Arabidopsis thaliana: a leucine-rich repeal class of plant disease resistance genes. Science 265, 1856–1860.

    Article  PubMed  CAS  Google Scholar 

  52. Warren, R. F., Henk, A., Mowery, P., Holub, E., and Innes, R. W. (1998) A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partinally suppresses multiple bacterial and downy mildew resistance genes. Plant Cell 10, 1439–1452.

    Article  PubMed  CAS  Google Scholar 

  53. McDowell, J. M., Dhandaydham, M., Long, T. A., et al. (1998) Intragenic recombination and diversifying selection contribute to the evolution ofdowny mildew resistance at the RPP8 locus of Arabidopsis. Plant Cell 10, 1861–1874.

    Article  PubMed  CAS  Google Scholar 

  54. Grant, M. R., Godiard, L., Straube, E., et al. (1995) Structures of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269, 843–846.

    Article  PubMed  CAS  Google Scholar 

  55. Lawrence, G. J., Finnegan, E. J., Ayliffe M. A., and Ellis, J. G. (1995) The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. Plant Cell 7, 1195–1206.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hikmet Budak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Budak, H., Kasap, Z., Shearman, R.C. et al. Molecular characterization of cDNA encoding resistance gene-like sequences in Buchloe dactyloides . Mol Biotechnol 34, 293–301 (2006). https://doi.org/10.1385/MB:34:3:293

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:34:3:293

Index Entries

Navigation