Skip to main content
Log in

Hexavalent chromium reduction by an actinomycete, Arthrobacter crystallopoietes ES 32

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Environmental contamination by hexavalent chromium, Cr(VI), presents a serious public health problem. This study assessed the reduction of Cr(VI) by intact cells and a cell-free extract (CFE) of an actinomycete, Arthrobacter crystallopoietes (strain ES 32), isolated from soil contaminated with dichromate. Both intact cells and CFE of A. crystallopoietes, displayed substantial reduction of Cr(VI). Intact cells reduced about 90% of the Cr(VI) added within 12 h and Cr(VI) was almost completely reduced after 24 h. The K M and V max of Cr(VI) bioreduction by intact cells were 2.61 µM and 0.0142 µmol/min/mg protein, respectively. Cell-free chromate reductase of the A. crystallopoietes (ES 32) reduced hexavalent chromium at a K M of 1.78 µM and a V max of 0.096 µmol/min/mg protein. The rate constant (k) of chromate reduction was inversely related to Cr(VI) concentration and the half-life (t 1/2) of Cr(VI) reduction increased with increasing concentration. A. crystallopoietes produced a periplasmic chromate reductase that was stimulated by NADH. Results indicate that A. crystallopoietes ES 32 can be used to detoxify Cr(VI) in polluted sites, particularly in stressed environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Michel, M. Brugma, C. Aubert, et al., Enzymatic reduction of chromate: comparative studies using sulfate-reducing bacteria, Appl. Microbiol. Biotechnol. 55, 95–100 (2001).

    Article  PubMed  CAS  Google Scholar 

  2. J. McLean and T. J. Beveridge, Chromate reduction by a pseudomonad isolated from a site contaminated with chromated copper arsenate, Appl. Environ. Microbiol. 67, 1076–1084 (2001).

    Article  PubMed  CAS  Google Scholar 

  3. M. E. Losi and W. T. Frankenberger, Chromium-resistant microorganisms isolated from evaporation ponds of a metal processing plant, Water Air Soil Pollut. 74, 405–413 (1994).

    CAS  Google Scholar 

  4. A. Ganguli and A. K. Tripathi, Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A2Chr in two bioreactors, Appl. Microbiol. Biotechnol. 58, 416–420 (2002).

    Article  PubMed  CAS  Google Scholar 

  5. M. A. Mondaca, C. L. Gonzalez, and C. A. Zaror, Isolation, characterization and expression of a plasmid encoding chromate resistance in Pseudomonas putida KT2441, Lett. Appl. Microbiol. 26, 367–371 (1998).

    Article  CAS  Google Scholar 

  6. A. H. Alvarez, R. Moreno-Sanchez, and C. Cervantes, Chromate efflux by means of the chrA chromate resistance protein from Pseudomonas aeruginosa, J. Bacteriol. 181, 7398–7400 (1999).

    PubMed  CAS  Google Scholar 

  7. Y. S. Oh and S. C. Choi, Reduction of hexavalent chromium by Pseudomonas aeruginosa HP014, J. Microbiol. 35, 25–29 (1997).

    CAS  Google Scholar 

  8. P. Pattanapipitpaisal, N. L. Brown, and L. F. Macaskie, Chromate reduction and 16S rRNA identification of bacteria isolated from a Cr(VI)-contaminated site, Appl. Microbiol. Biotechnol. 57, 257–261 (2001).

    Article  PubMed  CAS  Google Scholar 

  9. P. Wang, T. Mori, K. Toda, et al., Membrane-associated chromate reductase activity from Enterobacter cloacae, J. Bacteriol. 172, 1670–1672 (1990).

    PubMed  CAS  Google Scholar 

  10. D. P. Clark, Chromate reductase activity of Enterobacter aerogenes is induced by nitrite, FEMS Microbiol. Lett. 122, 233–238 (1994).

    Article  PubMed  CAS  Google Scholar 

  11. H. Shen and Y. Wang, Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456, Appl. Environ. Microbiol. 59, 3171–3777 (1993).

    Google Scholar 

  12. H. Guha, K. Jayachandran, and F. Maurrasse, Kinetics of chromium (VI) reduction by a type strain Shewanella alga under different growth conditions, Environ. Pollut. 115, 209–218 (2001).

    Article  PubMed  CAS  Google Scholar 

  13. Campos, J., M. Martinez-Pacheco, and C. Cervantes, Hexavalent-chromium reduction by a chromate-resistant Baccillus sp. strain, Antonie Leeuwenhoek 68, 203–208 (1995).

    Article  PubMed  CAS  Google Scholar 

  14. M. Basu, S. Bhattacharya, and A. K. Paul, Isolation and characterization of chromium-resistant bacteria from tannery effluents, Bull. Environ. Contam. Toxicol. 58, 535–542 (1997).

    Article  PubMed  CAS  Google Scholar 

  15. M. E. Losi and W. T. Frankenberger, Chromium-resistant microorganisms isolated from evaporation ponds of a metal processing plant, Water Air Soil Pollut. 74, 405–413 (1994).

    CAS  Google Scholar 

  16. F. A. O. Camargo, F. M. Bento, B. C. Okeke, et al., Chromate reduction by chromium-resistant bacteria isolated from soils contaminated with dichromate, J. Environ. Qual. 32, 1228–1233 (2003).

    Article  PubMed  CAS  Google Scholar 

  17. S. Das and A. L. Chandra, Chromate reduction in Streptomyces, Experientia 46, 731–733 (1990).

    Article  PubMed  CAS  Google Scholar 

  18. S. R. Laxman and S. More, Reduction of hevalent chromium by Streptomyces griseus, Miner. Eng. 15, 831–837 (2002).

    Article  CAS  Google Scholar 

  19. V. Desjardin, R. Bayard, N. Huck, et al., Effect of microbial activity on the mobility of chromium in soils, Waste Manag. 22, 195–200 (2002).

    Article  PubMed  CAS  Google Scholar 

  20. F. A. O. Camargo, B. C. Okeke, F. M. Bento, et al., Diversity of chromium-resistant bacteria isolated from soils contaminated with dichromate. Unpublished study.

  21. R. Francisco, M. C. Alpoim, and P. V. Morais, Diversity of chromium-resistant and reducing bacteria in chromium contaminated activated sludge, J. Appl. Microbiol. 92, 837–843 (2002).

    Article  PubMed  CAS  Google Scholar 

  22. R. J. Bartlett and B. R. James, Chromium, methods of soil analysis, Part 3, in Methods of Soil Analysis, Chemical Methods, D. L. Sparks, ed., ASA/SSSA, Madison, WI, pp. 683–701 (1996).

    Google Scholar 

  23. M. M. Bradford, A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72, 248–254 (1976).

    Article  PubMed  CAS  Google Scholar 

  24. S. O. Farrell and R. T. Ranallo, Experiments in Biochemistry: A Hands on Approach, Saunders, Orlando, FL (2000).

    Google Scholar 

  25. C. Cervantes, J. C. Garcia, S. Devars, et al., Interactions of chromium with microorganisms and plants, FEMS Microbiol. Rev. 25, 335–347 (2001).

    Article  PubMed  CAS  Google Scholar 

  26. J. M. Rajwade, P. B. Salunke, and K. M. Pknikar, Biochemical basis of chromate reduction by Pseudomonas mendocina, in Proceedings of the International BioHydrometallurgy Symposium, R. Amils and A. Ballester, eds., Elsevier, New York, pp. 105–114 (1999).

    Google Scholar 

  27. F. A. O. Camargo, B. C. Okeke, F. M. Bento, et al., In vitro reduction of hexavalent chromium by a cell-free extract of Bacillus sp. ES 29 Induced by Cu2+, Appl. Microbiol. Biotechnol, 62, 569–573.

  28. Ohtake, E. Fuji, and K. Toda, Reduction of toxic chromate in an industrial effluent by use of a chromate-reducing strain Enterobacter cloacae, Environ. Technol. 11, 663–668 (1990).

    Article  CAS  Google Scholar 

  29. C. H. Park, B. Keyhan, B. Wielinga, et al., Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase, Appl. Environ. Microbiol. 66, 1788–1795 (2000).

    Article  PubMed  CAS  Google Scholar 

  30. F. Abe, T. Miura, T. Nagahama, et al., Isolation of a highly copper-tolerant yeast, Cryptococcus sp., from the Japan trench and the induction of superoxide dismutase activity by Cu2+, Biotechnol. Lett. 23, 2027–2034 (2001).

    Article  CAS  Google Scholar 

  31. T. Suzuki, N. Miyata, H. Horitsu, et al., NAD(P)H-dependent chromium (VI) reductase of Pseudomonas ambigua G-1: a Cr(VI) intermediate is formed during the reduction of Cr(VI) to Cr(III), J. Bacteriol. 174, 5340–5345 (1992).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camargo, F.A., Bento, F.M., Okeke, B.C. et al. Hexavalent chromium reduction by an actinomycete, Arthrobacter crystallopoietes ES 32. Biol Trace Elem Res 97, 183–194 (2004). https://doi.org/10.1385/BTER:97:2:183

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:97:2:183

Index Entries

Navigation