Skip to main content
Log in

Effects of taurine on oxidative stress parameters and chromium levels altered by acute hexavalent chromium exposure in Mice Kidney tissue

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The kidney has been regarded as a critical organ of toxicity induced by acute exposure to hexavalent chromium [Cr(VI)] compounds. Reactive intermediates and free radicals generated during reduction process might be responsible for Cr(VI) toxicity. In this study, the effects of pretreatment or posttreatment of taurine on Cr(VI)-induced oxidative stress and chromium accumulation in kidney tissue of Swiss albino mice were investigated. Single intraperitoneal (ip) potassium dichromate treatment (20 mgCr/kg), as Cr(VI) compound, significantly elevated the level of lipid peroxidation as compared with the control group (p<0.05). This was accompanied by significant decreases in nonprotein sulfhydryls (NPSH) level, superoxide dismutase (SOD), and catalase (CAT) enzyme activities as well as a significant chromium accumulation (p<0.05). Taurine administration (1 g/kg, ip) before or after Cr(VI) exposure resulted in reduction of lipid peroxidation levels and improvement in SOD enzyme activity (p<0.05). On the other hand, administration of the antioxidant before Cr(VI) exposure restored the NPSH level and CAT enzyme activity and also reduced tissue chromium levels (p<0.05), whereas postreatment had only slight effects on these parameters. In view of the results, taurine seems to exert some beneficial effects against Cr(VI)-induced oxidative stress and chromium accumulation in mice kidney tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WHO, Chromium, Environmental Health Criteria Series: 61, WHO, Geneva (1988).

    Google Scholar 

  2. M. Costa, Toxicity and carcinogenicity of Cr(VI) in animal models and humans, Crit. Rev. Toxicol. 27, 431–442 (1997).

    PubMed  CAS  Google Scholar 

  3. R. Codd, C. T. Dillon, A. Levina, and P. A. Lay, Studies on the genotoxicity of chromium: from test tube to the cell, Coord. Chem. Rev. 216–217, 537–582 (2001).

    Article  Google Scholar 

  4. Y. L. Huang, C. Y. Chen, J. Y. Sheu, I. C. Chuang, J. H. Pan, and T. H. Lin, Lipid peroxidation in workers exposed to hexavalent chromium, J. Toxicol. Environ. Health A 56, 235–247 (1999).

    Article  PubMed  CAS  Google Scholar 

  5. S. N. Mattagajasingh, and H. P. Misra, Alterations in the prooxidant and antioxidant status of human leukemic T-lymphocyte MOLT4 cells treated with potassium chromate, Mol. Cell. Biochem. 142, 61–70 (1995).

    Article  PubMed  CAS  Google Scholar 

  6. D. Bagchi, S. J. Stohs, B. W. Downs, M. Bagchi, and H. G. Preuss, Cytotoxicity and oxidative mechanisms of different forms of chromium, Toxicology 180, 5–22 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. S. De Flora, and K. E. Wetterhahn, Mechanisms of chromium metabolism and genotoxicity. Life Chem. Rep. 7, 169–244 (1989).

    Google Scholar 

  8. K. J. Liu, and X. Shi, In vivo reduction of chromium (VI) and its related free radical gen eration, Mol. Cell. Biochem. 222, 41–47 (2001).

    Article  PubMed  CAS  Google Scholar 

  9. X. Shi, A. Chiu, C. T. Chen, B. Halliwell, V., Castranova, and V. Vallyathan, Reduction of chromium (VI) and its relationship to carcinogenesis, J. Toxicol. Environ. Health B 2, 87–104 (1999).

    Article  CAS  Google Scholar 

  10. I. R. Walpole, K. Johnston, R. Clarkson, G. Wilson, and G. Bower, Acute chromium poisoning in a 2 year old child, Aust. Paediatr. J. 21, 65–67 (1985).

    PubMed  CAS  Google Scholar 

  11. C. A. Michie, M. Hayhurst, G. J. Knobel, J. M. Stokol, and B. Hensley, Poisoning with a traditional remedy containing potassium dichromate, Hum. Exp. Toxicol. 10, 129–131 (1991).

    PubMed  CAS  Google Scholar 

  12. P. Sanz, S. Nogue, P. Munne, R. Torra, and F. Marques, Acute potassium dichromate poisoning. Hum. Exp. Toxicol. 10, 228–229 (1991).

    PubMed  CAS  Google Scholar 

  13. K. L. Meert, J. Ellis, R. Aronow, and E. Perrin, Acute ammonium dichromate poisoning, Ann. Emerg. Med. 24, 748–750 (1994).

    PubMed  CAS  Google Scholar 

  14. Z. Kolacinski, P. Kostrzewski, S. Kruszewska, G. Razniewska, and J. Mielczarska, Acute potassium dichromate poisoning: a toxicokinetic case study, J. Toxicol. Clin. Toxicol. 37, 785–791 (1999).

    Article  PubMed  CAS  Google Scholar 

  15. Y. Loubieres, A. De Lassence, M. Bernier, et al., Acute, fatal, oral chromic acid poisoning, J. Toxicol. Clin. Toxicol. 37, 333–336 (1999).

    Article  PubMed  CAS  Google Scholar 

  16. R. A. Goyer, and T. W. Clarkson, Toxic effects of metals, in Casarett and Doull's Toxicology: The Basic Science of Poisons, 6th ed., C. D. Klaassen, ed., McGraw-Hill, New York, pp. 811–867 (2001).

    Google Scholar 

  17. A. P. Evan, and W. G. Dail, The effects of sodium chromate on the proximal tubules of the rat kidney. Fine structural damage and lysozymuria, Lab. Invest 30, 704–715 (1974).

    PubMed  CAS  Google Scholar 

  18. Y. Hojo, and Y. Satomi, In vivo nephrotoxicity induced in mice by chromium (VI), involvement of glutathione and chromium(V), Biol. Trace Element Res. 31, 21–31 (1991).

    CAS  Google Scholar 

  19. R. Laborda, J. Diaz-Mayans, and A. Nunez, Nephrotoxic and hepatotoxic effects of chromium compounds in rats, Bull. Environ. Contam. Toxicol. 36, 332–336 (1986).

    Article  PubMed  CAS  Google Scholar 

  20. X. Wang, Q. Qin, X. Xu, et al., Chromium-induced early changes in renal function among ferrochromium-producing workers, Toxicology 90, 93–101 (1994).

    Article  PubMed  CAS  Google Scholar 

  21. C. S. Liu, H. W. Kuo, J. S. Lai, and T. I. Lin, Urinary N-acetyl-β-glucosaminidase as an indicator of renal dysfunction in electroplating workers, Int. Arch. Occup. Environ. Health 71, 348–352 (1998).

    Article  PubMed  CAS  Google Scholar 

  22. R. P. Wedeen, S. Haque, I. Udasin, P. C. D'Haese, M. Elseviers, and M. E. De Broe Absence of tubular proteinuria following environmental exposure to chromium, Arch. Environ. Health 51, 321–323 (1996).

    Article  PubMed  CAS  Google Scholar 

  23. S. Langard, and T. Norseth, Chromium, in Handbook on the Toxicology of Metals, Volume II: Specific Metals, 2nd ed., L. Friberg, G. F. Nordberg, and V. B. Vouk, eds., Elsevier, Amsterdam, pp. 185–210 (1986).

    Google Scholar 

  24. D. G. Barceloux, Chromium, Clin. Toxicol. 37 173–194 (1999).

    Article  CAS  Google Scholar 

  25. R. J. Huxtable, and L. A. Sebring, Towards a unifying theory for the actions of taurine, Trends Pharmacol. Sci., 7, 481–485 (1986).

    Article  CAS  Google Scholar 

  26. H. P. Redmond, P. P. Stapleton, P. Neary, and D. Bouchier-Hayes, Immunonutrition: the role of taurine, Nutrition 14, 599–604 (1998).

    Article  PubMed  CAS  Google Scholar 

  27. H. Ha, M. R. Yu, and K. H. Kim, Melatonin and taurine reduce early glomerulopathy in diabetic rats, Free Radical Biol. Med. 26, 944–950 (1999).

    Article  CAS  Google Scholar 

  28. A. Erdem, N. U. Gundogan, A. Usubutun, et al., The protective effect of taurine against gentamicin-induced acute tubular necrosis in rats, Nephrol. Dial. Transplant 15, 1175–1182 (2000).

    Article  PubMed  CAS  Google Scholar 

  29. H. Gürer, H. Özgüne s, E. Saygin, and N. Ercal, Antioxidant effect of taurine against lead-induced oxidative stress, Arch. Environ. Contam. Toxicol. 41, 397–402 (2001).

    Article  PubMed  Google Scholar 

  30. E. Waters, J. H. Wang, H. P. Redmond, Q. D. Wu, E. Kay, and D. Bouchier-Hayes, Role of taurine in preventing acetaminophen-induced hepatic injury in the rat, Am. J. Physiol. Gastrointest. Liver Physiol. 280, G1274-G1279 (2001).

    PubMed  CAS  Google Scholar 

  31. B. Eppler, and R. Dawson, Jr. Cytoprotective role of taurine in a renal epithelial cell culture model, Biochem. Pharmacol., 63, 1051–1060 (2002).

    Article  PubMed  CAS  Google Scholar 

  32. S. Ueno, N. Susa, Y. Furukawa, and M. Sugiyama, Formation of paramagnetic chromium in liver of mice treated with dichromate(VI). Toxicol. Appl. Pharmacol. 135, 165–171 (1995).

    Article  PubMed  CAS  Google Scholar 

  33. J. Azuma, T. Hamaguchi, H. Ohta, et al., Calcium overload-induced mycardial damage caused by isoproterenol and by adriamycin: possible role of taurine in its prevention. Adv. Exp. Med. Biol. 217, 167–179, (1987).

    PubMed  CAS  Google Scholar 

  34. T. Hamaguchi, J. Azuma, N. Awata, et al., Reduction of doxorubicin-induced cardiotoxicity in mice by taurine, Res. Commun. Chem. Pathol. Pharmacol. 59, 21–30 (1988).

    PubMed  CAS  Google Scholar 

  35. K. Korang, L. Milakofsky, T. A. Hare, J. M. Hofford, and W. H. Vogel, Levels of taurine, amino acids and related compounds in plasma, vena cava, aorta and heart of rats after taurine administration, Pharmacology 52, 263–270 (1996).

    PubMed  CAS  Google Scholar 

  36. H. Ohkawa, N. Ohishi, and K. Yagi, Assay for lipid peroxides by thiobarbituric acid reaction, Anal. Biochem. 95, 351–358 (1979).

    Article  PubMed  CAS  Google Scholar 

  37. J. Rungby, and E. Ernst, Experimentally induced lipid peroxidation after exposure to chromium, mercury or silver: Interactions with carbon tetrachloride, Pharmacol. Toxicol. 70, 205–207 (1992).

    PubMed  CAS  Google Scholar 

  38. J. Sedlak, and R. H. Lindsay, Estimation of total protein-bound and non-protein sulfhydryl groups in tissue with Ellman's reagent, Anal. Biochem. 25, 192–205 (1968).

    Article  PubMed  CAS  Google Scholar 

  39. J. D. Crapo, J. M. McCord, and I. Fridovich, Preparation and assay of superoxide dismutases, Methods Enzymol. 53, 382–393 (1978).

    PubMed  CAS  Google Scholar 

  40. H. Aebi. Catalase in vitro Methods Enzymol. 105, 121–126 (1984).

    Article  PubMed  CAS  Google Scholar 

  41. E. C. Phifer, Determination of chromium and molybdenum in medical foods by graphite furnace atomic absorption spectrophotometry, J. AOAC Int. 78, 1497–1501 (1995).

    PubMed  CAS  Google Scholar 

  42. M. A. Sipowicz, L. M. Anderson, W. E. Utermahlen, Jr., H. J. Issaq, and K. S. Kasprzak, Uptake and tissue distribution of chromium (III) in mice after a single intraperitoneal or subcutaneous administration, Toxicol. Lett. 93, 9–14 (1997).

    Article  PubMed  CAS  Google Scholar 

  43. S. J. Stohs, and D. Bagchi, Oxidative mechanisms in the toxicity of metal ions, Free Radical Biol. Med. 18, 321–336 (1995).

    Article  CAS  Google Scholar 

  44. T. Sengupta, D. Chattopadhyay, N. Ghosh, G. Maulik, and G. C. Chatterjee, Impact of chromium on lipoperoxidative processes and subsequent operation of the glutathione cycle in rat renal system, Indian J. Biochem. Biophys. 29, 287–290 (1992).

    PubMed  CAS  Google Scholar 

  45. Y. Hojo, A. Okado, S. Kawazoe, and T. Mizutani, Direct evidence for in vivo hydroxyl radical generation in blood of mice after acute chromium (VI) intake. Electron spin resonance spin-trapping investigation, Biol. Trace Element Res. 76, 75–84 (2000).

    Article  CAS  Google Scholar 

  46. J. P. Kehrer, The Haber-Weiss reaction and mechanisms of toxicity, Toxicology 149, 43–50 (2000).

    Article  PubMed  CAS  Google Scholar 

  47. B. Halliwell, Reactive oxygen species in living systems: source, biochemistry, and role in human disease, Am. J. Med. 91 (Suppl. 3C), 14S-22S (1991).

    Article  PubMed  CAS  Google Scholar 

  48. J. M. C. Gutteridge, Lipid peroxidation and antioxidants as biomarkers of tissue damage, Clin. Chem. 41, 1819–1828 (1995).

    PubMed  CAS  Google Scholar 

  49. A. Meister, Glutathione metabolism, Methods Enzymol. 251, 3–7 (1995).

    PubMed  CAS  Google Scholar 

  50. C. K. Sen, Nutritional biochemistry of cellular glutathione, Nutr. Biochem. 8, 660–672 (1997).

    Article  CAS  Google Scholar 

  51. H. J. Wiegand, H. Ottenwalder, and H. M. Bolt, The reduction of chromium (VI) to chromium (III) by glutathione: an intracellular redox pathway in the metabolism of the carcinogen chromate, Toxicology 33, 341–348 (1984).

    Article  PubMed  CAS  Google Scholar 

  52. OEHHA, Public Health Goal for Chromium in Drinking Water, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (1999). http://www.oehha.ca.gov/water/phg/pdf/chrom_f.pdf

  53. M. Gunaratnam, M. Pohlscheidt, and M. H. Grant, Pretreatment of rats with the inducing agents phenobarbitone and 3-methylcholantrene ameliorates the toxicity of chromium (VI) in hepatocytes, Toxicology In Vitro 16, 509–516 (2002).

    Article  PubMed  CAS  Google Scholar 

  54. A. M. Standeven, and K. E. Wetterhahn, Possible role of glutathione in chromium(VI) metabolism and toxicity in rats, Pharmacol. Toxicol. 68, 469–476 (1991).

    Article  PubMed  CAS  Google Scholar 

  55. D. Y. Cupo, and K. E. Wetterhahn, Modification of Cr(VI)-induced DNA damage by glutathione and cytochromes P-450 in chicken embryo hepatocytes, Proc. Natl. Acad. Sci. USA 82, 6755–6759 (1985).

    Article  PubMed  CAS  Google Scholar 

  56. R. D. Snyder, Role of active oxygen species in metal-induced DNA strand breakage in human diploid fibroblasts, Mutat. Res. 193, 237–246 (1988).

    PubMed  CAS  Google Scholar 

  57. C. Michiels, M. Raes, O. Toussaint, and J. Remacle, Importance of Se-glutathione peroxidase, catalase and Cu/Zn-SOD for cell survival against oxidative stress, Free Radical Biol. Med. 17, 235–248 (1994).

    Article  CAS  Google Scholar 

  58. R. Shainkin-Kestenbaum, C. Caruso, and G. M. Berlyne, Effect of chromium on oxygen free radical metabolism, inhibition of superoxide dismutase and enhancement of 6-hydroxydopamine oxidation, J. Trace Elements Electrolytes Health Dis. 5, 197–201 (1991).

    CAS  Google Scholar 

  59. Y. H. Koh, S. J. Yoon, and J. W. Park, Inactivation of copper, zinc superoxide dismutase by the lipid peroxidation products malondialdehyde and 4-hydroxynonenal. J. Biochem. Mol. Biol. 32, 440–444 (1999).

    CAS  Google Scholar 

  60. U. Korallus, C. Harzdorf, and J. Lewalter, Experimental bases for ascorbic acid therapy of poisoning by hexavalent chromium compounds, Int. Arch. Occup. Environ. Health 53, 247–256 (1984).

    Article  PubMed  CAS  Google Scholar 

  61. E. Ginter, D. Chorvatovicova, and A. Kosinova, Vitamin C lowers mutagenic and toxic effects of hexavalent chromium in guinea pigs, Int. J. Vitam. Nutr. Res. 59, 161–166 (1989).

    PubMed  CAS  Google Scholar 

  62. M. Sugiyama, Effects of vitamins on chromium (VI)-induced damage, Environ. Health Perspect. 92, 63–70 (1991).

    Article  PubMed  CAS  Google Scholar 

  63. N. Susa, S. Ueno, Y. Furukawa, J. Ueda, and M. Sugiyama, Potent protective effect of melatonin on chromium (VI)-induced DNA single-strand breaks, cytotoxicity, and lipid peroxidation in primary cultures of rat hepatocytes, Toxicol. Appl. Pharmacol. 144, 377–384 (1997).

    Article  PubMed  CAS  Google Scholar 

  64. S. K. Dey, P. Nayak, and S. Roy, Chromium-induced membrane damage: protective role of ascorbic acid, J. Environ. Sci. 13, 272–275 (2001).

    CAS  Google Scholar 

  65. S. K. Dey, P. Nayak, and S. Roy, Alpha-tocopherol supplementation on chromium toxicity: a study on rat liver and kidney cell membrane, J. Environ. Sci. 15, 356–359 (2003).

    CAS  Google Scholar 

  66. S. H. Hansen, The role of taurine in diabetes and the development of diabetic complications. Diabetes Metab. Res. Rev. 17, 330–346 (2001).

    Article  PubMed  CAS  Google Scholar 

  67. A. S. Ebrahim, and D. Sakthisekaran, Effect of vitamin E and taurine treatment on lipid peroxidation and antioxidant defense in perchloroethylene-induced cytotoxicity in mice. Nutr. Biochem. 8, 270–274 (1997).

    Article  CAS  Google Scholar 

  68. D. Appenroth, K. Winnefeld, H. Schröter, and M. Rost, The ambiguous effect of ascorbic acid on chromate induced proteinuria in rats. Arch. Toxicol. 68, 138–141 (1994).

    Article  PubMed  CAS  Google Scholar 

  69. B. Halliwell, and J. M. C. Cutteridge, Free Radicals in Biology and Medicine, 3rd ed., Oxford University Press, New York, (2000).

    Google Scholar 

  70. R. W. Grunewald, and R. K. H. Kinne, Osmoregulation in the mammalian kidney: the role of organic osmolytes, J. Exp. Zool. 283, 708–724 (1999).

    Article  PubMed  CAS  Google Scholar 

  71. M. Ogasawara, T. Nakamura, I. Koyama, M. Nemoto, and T. Yoshida, Reactivity of taurine with aldehydes and its physiological role, Adv. Exp. Med. Biol, 359, 71–78 (1994).

    PubMed  CAS  Google Scholar 

  72. O. I. Aruoma, B. Halliwell, B. M. Hoey, and J. Butler, The antioxidant action of taurine, hypotaurine and their metabolic precursors, Biochem. J. 256, 251–255 (1988).

    PubMed  CAS  Google Scholar 

  73. X. Shi, D. C. Flynn, D. W. Porter, S. S. Leonard, V. Vallyathan, V. Castranova, Efficacy of taurine based compounds as hydroxyl radical scavengers in silica induced peroxidation, Ann. Clin. Lab. Sci. 27, 365–374 (1997).

    PubMed  CAS  Google Scholar 

  74. Environmental Protection Agency (EPA). Hexavalent chromium (colorimetric), Method 7196A (1992).

  75. J. E. Sutherland, A. Zhitkovich, T. Kluz, and M. Costa, Rats retain chromium in tissues following chronic ingestion of drinking water containing hexavalent chromium, Biol. Trace Element Res. 74, 41–54 (2000).

    Article  CAS  Google Scholar 

  76. J. Chmielnicka, E. Swietlicka, and M. Nasiadek, Essential elements as early indicators of hexavalent chromium nephrotoxicity, Ecotoxicol. Environ. Safety Environ. Res. B 53, 20–26 (2002).

    Article  CAS  Google Scholar 

  77. D. F. Hwang, L. C. Wang, and H. M. Cheng, Effects of taurine on toxicity of copper in rats, Food Chem. Toxicol. 36, 239–244 (1998).

    Article  PubMed  CAS  Google Scholar 

  78. D. F. Hwang, and L. C. Wang, Effect of taurine on toxicity of cadmium in rats. Toxicology 167, 173–180 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boşgelmez, I.I., Güvendik, G. Effects of taurine on oxidative stress parameters and chromium levels altered by acute hexavalent chromium exposure in Mice Kidney tissue. Biol Trace Elem Res 102, 209–225 (2004). https://doi.org/10.1385/BTER:102:1-3:209

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:102:1-3:209

Index Entries

Navigation