Skip to main content
Log in

Neurotrophic mechanisms in drug addiction

  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

The involvement of neurotrophic factors in neuronal survival and differentiation is well established. The more recent realization that these factors also play pivotal roles in the maintenance and activity-dependent remodeling of neuronal functioning in the adult brain has generated excitement in the neurosciences. Neurotrophic factors have been implicated in the modulation of synaptic transmission and in the mechanisms underlying learning and memory, mood disorders, and drug addiction. Here the evidence for the role of neurotrophins and other neurotrophic factors—and the signaling pathways they activate—in mediating long-term molecular, cellular, and behavioral adaptations associated with drug addiction is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrous, D. N., Adriani, W., Montaron, M. F., et al. (2002) Nicotine self-administration impairs hippocampal plasticity. J. Neurosci. 22, 3656–3662.

    PubMed  CAS  Google Scholar 

  • Alonso, M., Vianna, M. R., Depino, A. M., et al. (2002) BDNF-triggered events in the rat hippocampus are required for both short- and long-term memory formation. Hippocampus 12, 551–560.

    Article  PubMed  CAS  Google Scholar 

  • Barbacid, M. (1995) Neurotrophic factors and their receptors. Curr. Opin. Cell Biol. 7, 148–155.

    Article  PubMed  CAS  Google Scholar 

  • Barde, Y. (1989) Trophic factors and neuronal survival. Neuron 2, 1525–1534.

    Article  PubMed  CAS  Google Scholar 

  • Barde, Y. A. (1994) Neurotrophins: a family of proteins supporting the survival of neurons. Prog. Clin. Biol. Res. 390, 45–56.

    PubMed  CAS  Google Scholar 

  • Barrot, M., Olivier, J. D., Perrotti, L. I., et al. (2002) CREB activity in the nucleus accumbens shell controls gating of behavioral responses to emotional stimuli. Proc. Natl. Acad. Sci. USA. 99, 11435–11440.

    Article  PubMed  CAS  Google Scholar 

  • Batchelor, P. E., Liberatore, G. T., Porritt, M. J., Donnan, G. A., Howells, D. W. (2000) Inhibition of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor expression reduces dopaminergic sprouting in the injured striatum. Eur. J. Neurosci. 12, 3462–3468.

    Article  PubMed  CAS  Google Scholar 

  • Beitner-Johnson, D., and Nestler, E. J. (1991) Morphine and cocaine exert common chronic actions on tyrosine hydroxylase in dopaminergic brain reward regions. J. Neurochem. 57, 344–347.

    Article  PubMed  CAS  Google Scholar 

  • Beitner-Johnson, D., and Nestler, E. J. (1993a) Chronic morphine impairs axoplasmic transport in the mesolimbic dopamine system of the rat brain. Neuro Report 5, 57–60.

    CAS  Google Scholar 

  • Beitner-Johnson, D., and Nestler, E. J. (1993b) Chronic morphine decreases insulin-like growth factor-I levels in the ventral tegmental area of the rat brain. Ann. NY Acad. Sci. 692, 246–248.

    Article  PubMed  CAS  Google Scholar 

  • Beitner-Johnson, D., Guitart, X., Nestler, E. J. (1992) Neurofilament proteins and the mesolimbic dopamine system: common regulation by chronic morphine and chronic cocaine in the rat ventral tegmental area. J. Neurosci. 12, 2165–2176.

    PubMed  CAS  Google Scholar 

  • Beitner-Johnson, D., Guitart, X., Nestler, E. J. (1993) Glial fibrillary acidic protein and the mesolimbic dopamine system: regulation by chronic morphine and Lewis-Fischer strain differences in the rat ventral tegmental area. J. Neurochem. 61, 1766–1773.

    Article  PubMed  CAS  Google Scholar 

  • Berhow, M. T., Hiroi, N., Nestler, E. J. (1996a) Regulation of ERK (extracellular signal regulated kinase), part of the neurotrophin signal transduction cascade, in the rat mesolimbic dopamine system by chronic exposure to morphine or cocaine. J. Neurosci. 16, 4707–4715.

    PubMed  CAS  Google Scholar 

  • Berhow, M. T., Hiroi, N., Kobierski, L. A., Hyman, S. E., Nestler, E. J. (1996b) Influence of cocaine on the JAK-STAT pathway in the mesolimbic dopamine system. J. Neurosci. 16, 8019–8026.

    PubMed  CAS  Google Scholar 

  • Berhow, M. T., Russell, D. S., Terwilliger, R. Z., et al. (1995) Influence of neurotrophic factors on morphine- and cocaine-induced biochemical changes in the mesolimbic dopamine system. Neuroscience 68, 969–979.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M. J., Lipp, P., Bootman, M. D. (2000) The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11–21.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M. J., Bootman, M. D., Roderick, H. L. (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4, 517–529.

    Article  PubMed  CAS  Google Scholar 

  • Bibb, J. A., Chen, J., Taylor, J. R., et al. (2001) Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature 410, 376–380.

    Article  PubMed  CAS  Google Scholar 

  • Bibel, M., and Barde, Y. A. (2000) Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev. 14, 2919–2937.

    Article  PubMed  CAS  Google Scholar 

  • Bolanos, C. A., Olson, V. G., Eisch, A. J., Russell, D. S., Neve, R. L., Nestler, E. J. (2001) Viral-mediated expression of phospholipase C-gamma 1 and insulin receptor substrate-2 in the ventral tegmental area regulates sensitivity to drugs of abuse in rats. Soc. Neurosci. Abstr. 27,

  • Bolanos, C. A., Perrotti, L. I., Edwards, S., et al. (2003) Phospholipase Cgamma in distinct regions of the ventral tegmental area differentially modulates mood-related behaviors. J. Neurosci. 23, 7569–7576.

    PubMed  Google Scholar 

  • Bonci, A., Malenka, R. C. (1999) Properties and plasticity of excitatory synapses on dopaminergic and GABAergic cells in the ventral tegmental area. J. Neurosci. 19, 3723–3730.

    PubMed  CAS  Google Scholar 

  • Bonni, A., and Greenberg, M. E. (1997) Neurotrophin regulation of gene expression. Can. J. Neurol. Sci. 24, 272–283.

    PubMed  CAS  Google Scholar 

  • Carlezon, W. A., Jr., Boundy, V. A., Haile, C. N., et al. (1997) Sensitization to morphine induced by viral-mediated gene transfer. Science 277, 812–814.

    Article  PubMed  CAS  Google Scholar 

  • Carlezon, W. A., Jr., Thome, J., Olson, V. G., et al. (1998) Regulation of cocaine reward by CREB. Science 282, 2272–2275.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter G. and Ji Q. (1999) Phospholipase C-gamma as a signal-transducing element. Exp. Cell Res. 253, 15–24.

    Article  PubMed  CAS  Google Scholar 

  • Ceccatelli, S., Ernfors, P., Villar, M. J., Persson, H., Hokfelt, T. (1991) Expanded distribution of mRNA for nerve growth factor, brain-derived neurotrophic factor, and neurotrophin 3 in the rat brain after colchicine treatment. Proc. Natl. Acad. Sci. USA. 88, 10352–10356.

    Article  PubMed  CAS  Google Scholar 

  • Chao, M. V. (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat. Rev. Neurosci. 4, 299–309.

    Article  PubMed  CAS  Google Scholar 

  • Conner, J. M., Lauterborn, J. C., Yan, Q., Gall, C. M., Varon, S. (1997) Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J. Neurosci. 17, 2295–2313.

    PubMed  CAS  Google Scholar 

  • Danzer, S. C., Crooks, K. R., Lo, D. C., McNamara, J. O. (2002) Increased expression of brain-derived neurotrophic factor induces formation of basal dendrites and axonal branching in dentate granule cells in hippocampal explant cultures. J. Neurosci. 22, 9754–9763.

    PubMed  CAS  Google Scholar 

  • Dechant, G., and Neumann, H. (2002) Neurotrophins. Adv. Exp. Med. Biol. 513, 303–334.

    PubMed  CAS  Google Scholar 

  • Dhavan, R., and Tsai, L. H. (2001) A decade of CDK5. Nat. Rev. Mol. Cell Biol. 2, 749–759.

    Article  PubMed  CAS  Google Scholar 

  • Di Chiara, G. (1999) Drug addiction as dopamine-dependent associative learning disorder. Eur. J. Pharmacol. 375, 13–30.

    Article  PubMed  Google Scholar 

  • Di Chiara, G., and North, R. A. (1992) Neurobiology of opiate abuse. Trends Pharmacol. Sci. 13, 185–193.

    Article  PubMed  Google Scholar 

  • Downward, J. (2001) The ins and outs of signalling. Nature 411, 759–762.

    Article  PubMed  CAS  Google Scholar 

  • Duman, R. S. (2002) Synaptic plasticity and mood disorders. Mol. Psychiatry 7(suppl 1) S29-S34.

    Article  PubMed  CAS  Google Scholar 

  • Eisch, A. J., Barrot, M., Schad, C. A., Self, D. W., Nestler, E. J. (2000) Opiates inhibit neurogenesis in the adult rat hippocampus. Proc. Natl. Acad. Sci. USA. 97, 7579–7584.

    Article  PubMed  CAS  Google Scholar 

  • Flores, C., Rodaros, D., Stewart, J. (1998) Long-lasting induction of astrocytic basic fibroblast growth factor by repeated injections of amphetamine: blockade by concurrent treatment with a glutamate antagonist. J. Neurosci. 18, 9547–9555.

    PubMed  CAS  Google Scholar 

  • Flores, C., Samaha, A. N., Stewart, J. (2000) Requirement of endogenous basic fibroblast growth factor for sensitization to amphetamine. J. Neurosci. 20, RC55.

    Google Scholar 

  • Freeman, A. Y., and Pierce, R. C. (2002) Neutralization of neutrophin-3 in the ventral tegmental area or nucleus accumbens differentially modulates cocaine-induced behavioral plasticity in rats. Synapse 46, 57–65.

    Article  PubMed  CAS  Google Scholar 

  • Gash, D. M., Zhang, Z., Ovadia, A., et al. (1996) Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380, 252–3255.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh, A., and Greenberg, M. E. (1995) Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 268, 239–247.

    Article  PubMed  CAS  Google Scholar 

  • Gould, E., Tanapat, P., Hastings, N. B., Shors, T. J. (1999) Neurogenesis in adulthood: a possible role in learning. Trends Cogn. Sci. 3, 186–192.

    Article  PubMed  Google Scholar 

  • Graybiel, A. M. (2000) The basal ganglia. Curr. Biol. 10, R509-R511.

    Article  PubMed  CAS  Google Scholar 

  • Griffin, J. W., Clark, A. C., Parhad, I., Watson, D. F., Hoffman, P. N. (1991) The neuronal cytoskeleton in disorders of the motor neuron. Adv. Neurol. 56, 103–113.

    PubMed  CAS  Google Scholar 

  • Grimm, J. W., Lu, L., Hayashi, T., Hope, B. T., Su, T. P., Shaham, Y. (2003) Time-dependent increases in brain-derived neurotrophic factor protein levels within the mesolimbic dopamine system after withdrawal from cocaine: implications for incubation of cocaine craving. J. Neurosci. 23, 742–747.

    PubMed  CAS  Google Scholar 

  • Guillin, O., Diaz, J., Carroll, P., Griffon, N., Schwartz, J. C., Sokoloff, P. (2001) BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization. Nature 411, 86–389.

    Article  PubMed  CAS  Google Scholar 

  • Hall, F. S., Drgonova, J., Goeb, M., Uhl, G. R. (2003) Reduced behavioral effects of cocaine in heterozygous brain-derived neurotrophic factor (BDNF) knockout mice. Neuropsychopharmacology 28, 1485–1490.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, P. N., Griffin, J. W., Price, D. L. (1984) Control of axonal caliber by neurofilament transport. J. Cell. Biol. 99, 705–714.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, P. N., Cleveland, D. W., Griffin, J. W., Landes, P. W., Cowan, N. J., Price, D. L. (1987) Neurofilament gene expression: a major determinant of axonal caliber. Proc. Natl. Acad. Sci. USA. 84, 3472–3476.

    Article  PubMed  CAS  Google Scholar 

  • Horch, H. W., and Katz, L. C. (2002) BDNF release from single cells elicits local dendritic growth in nearby neurons. Nat. Neurosci. 5, 1177–1184.

    Article  PubMed  CAS  Google Scholar 

  • Horger, B. A., Iyasere, C. A., Berhow, M. T., Messer, C. J., Nestler, E. J., Taylor, J. R. (1999) Enhancement of locomotor activity and conditioned reward to cocaine by brain-derived neurotrophic factor. J. Neurosci. 19, 4110–4122.

    PubMed  CAS  Google Scholar 

  • Hyman, C., Juhasz, M., Jackson, C., Wright, P., Ip, N. Y., Lindsay, R. M. (1994) Overlapping and distinct actions of the neurotrophins BDNF, NT-3, and NT-4/5 on cultured dopaminergic and GABAergic neurons of the ventral mesencephalon. J. Neurosci. 14, 335–347.

    PubMed  CAS  Google Scholar 

  • Hyman, S. E., and Malenka, R. C. (2001) Addiction and the brain: the neurobiology of compulsion and its persistence. Nat. Rev. Neurosci. 2, 695–703.

    Article  PubMed  CAS  Google Scholar 

  • Ip, N. Y., Nye, S. H., Boulton, T. G., et al. (1992) CNTF and LIF act on neuronal cells via shared signaling pathways that involve the IL-6 signal transducing receptor component gp130. Cell 69, 1121–1132.

    Article  PubMed  CAS  Google Scholar 

  • Isackson, P. J., Huntsman, M. M., Murray, K. D., Gall, C. M. (1991) BDNF mRNA expression is increased in adult rat forebrain after limbic seizures: temporal patterns of induction distinct from NGF. Neuron 6, 937–948.

    Article  PubMed  CAS  Google Scholar 

  • Izzo, E., Martin-Fardon, R., Koob, G. F., Weiss, F., Sanna, P. P. (2002) Neural plasticity and addiction: PI3-kinase and cocaine behavioral sensitization. Nat. Neurosci. 5, 1263–1264.

    Article  PubMed  CAS  Google Scholar 

  • Kalivas, P. W., Striplin, C. D., Steketee, J. D., Klitenick, M. A., Duffy, P. (1992) Cellular mechanisms of behavioral sensitization to drugs of abuse. Ann. NY Acad. Sci. 654, 128–135.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan, D. R., and Miller, F. D. (2000) Neurotrophin signal transduction in the nervous system. Curr. Opin. Neurobiol. 10, 381–391.

    Article  PubMed  CAS  Google Scholar 

  • Kelley, A. E., and Berridge, K. C. (2002) The neuroscience of natural rewards: relevance to addictive drugs. J. Neurosci. 22, 3306–3311.

    PubMed  CAS  Google Scholar 

  • Kempermann, G., van Praag, H., Gage, F. H. (2000) Activity-dependent regulation of neuronal plasticity and self repair. Prog, Brain Res, 127, 35–48.

    Article  CAS  Google Scholar 

  • Kernie, S. G., and Parada, L. F. (2000) The molecular basis for understanding neurotrophins and their relevance to neurologic disease. Arch. Neurol. 57, 654–657.

    Article  PubMed  CAS  Google Scholar 

  • Koob, G. F., and Nestler, E. J. (1997) The neurobiology of drug addiction. J. Neuropsychiatry Clin. Neurosci. 9, 482–497.

    PubMed  CAS  Google Scholar 

  • Koob, G. F., Sanna, P. P., Bloom, F. E. (1998) Neuroscience of addiction. Neuron 21, 467–476.

    Article  PubMed  CAS  Google Scholar 

  • Lee, F. S., Kim, A. H., Khursigara, G., Chao, M. V. (2001) The uniqueness of being a neurotrophin receptor. Curr. Opin. Neurobiol. 11, 281–286.

    Article  PubMed  CAS  Google Scholar 

  • Lindsay, R. M., Weigand, S. J., Altar, C. A., DiStefano, P. S. (1994) Neurotrophic factors: from molecules to man. Trends Neurosci. 17, 182–190.

    Article  PubMed  CAS  Google Scholar 

  • Lu, B., and Figurov, A. (1997) Role of neurotrophins in synapse development and plasticity. Rev. Neurosci. 22, 295–318.

    Google Scholar 

  • McFarlane, S. (2000) Dendritic morphogenesis: building an arbor. Mol. Neurobiol. 22, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Messer, C. J., Eisch, A. J., Carlezon, W. A., Jr., et al. (2000) Role for GDNF in biochemical and behavioral adaptations to drugs of abuse. Neuron 26, 247–257.

    Article  PubMed  CAS  Google Scholar 

  • Myers, M. G., Jr., Backer, J. M., Sun, X. J., et al. (1992) IRS-1 activates phosphatidylinositol 3′-kinase by associating with src homology 2 domains of p85. Proc. Natl. Acad. Sci. USA. 89, 10350–10354.

    Article  PubMed  CAS  Google Scholar 

  • Nestler, E. J. (1992) Molecular mechanisms of drug addiction. J. Neurosci. 12, 2439–2450.

    PubMed  CAS  Google Scholar 

  • Nestler, E. J. (2001) Molecular basis of long-term plasticity underlying addiction. Nat. Rev. Neurosci. 2, 119–128.

    Article  PubMed  CAS  Google Scholar 

  • Nestler, E. J. (2002) Common molecular and cellular substrates of addiction and memory. Neurobiol. Learn. Mem. 78, 637–647.

    Article  PubMed  CAS  Google Scholar 

  • Nestler, E. J., Berhow, M. T., Brodkin, E. S. (1996) Molecular mechanisms of drug addiction: adaptations in signal transduction pathways. Mol. Psychiatry. 1, 190–3199.

    PubMed  CAS  Google Scholar 

  • Nestler, E. J., Bergson, C. M., Gultart, X., Hope, B. T. (1993) Regulation of neural gene expression in opiate and cocaine addiction. NIDA Res. Monogr. 125, 92–116.

    PubMed  CAS  Google Scholar 

  • Nestler, E. J., Barrot, M., DiLeone, R. J., Eisch, A. J., Gold, S. J., Monteggia, L. M. (2002) Neurobiology of depression. Neuron 34, 13–25.

    Article  PubMed  CAS  Google Scholar 

  • Nixon, K., and Crews, F. T. (2002) Binge ethanol exposure decreases neurogenesis in adult rat hippocampus. J. Neurochem. 83, 1087–1093.

    Article  PubMed  CAS  Google Scholar 

  • Norrholm, S. D., Bibb, J. A., Nestler, E. J., Ouimet, C. C., Taylor, J. R., Greengard, P. (2003) Cocaine-induced proliferation of dendritic spines in nucleus accumbens is dependent on the activity of cyclin-dependent kinase-5. Neuroscience 116, 19–22.

    Article  PubMed  CAS  Google Scholar 

  • Numan, S., and Seroogy, K. B. (1999) Expression of trkB and trkC mRNAs by adult midbrain dopamine neurons: a double-label in situ hybridization study. J. Comp. Neurol. 403, 295–308.

    Article  PubMed  CAS  Google Scholar 

  • Ortiz, J., Harris, H. W., Guitart, X., Terwilliger, R. Z., Haycock, J. W., Nestler, E. J. (1995a) Extracellular signal-regulated protein kinases (ERKs) and ERK kinase (MEK) in brain: regional distribution and regulation by chronic morphine. J. Neurosci. 15, 1285–1297.

    PubMed  CAS  Google Scholar 

  • Ortiz, J., Fitzgerald, L. W., Charlton, M., et al. (1995b) Biochemical actions of chronic ethanol exposure in the mesolimbic dopamine system. Synapse 21, 289–298.

    Article  PubMed  CAS  Google Scholar 

  • Patterson, S. L., Abel, T., Deuel, T. A., Martin, K. C., Rose, J. C., Kandel, E. R. (1996) Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 16, 1137–31145.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, H. S., Hains, J. M., Laramee, G. R., Rosenthal, A., Winslow, J. W. (1990) Widespread expression of BDNF but not NT3 by target areas of basal forebrain cholinergic neurons. Science 250, 290–3294.

    Article  PubMed  CAS  Google Scholar 

  • Pierce, R. C., and Bari A. A. (2001) The role of neurotrophic factors in psychostimulant-induced behavioral and neuronal plasticity. Rev. Neurosci. 12, 95–110.

    PubMed  CAS  Google Scholar 

  • Pierce, R. C., Pierce-Bancroft, A. F., Prasad, B. M. (1999) Neurotrophin-3 contributes to the initiation of behavioral sensitization to cocaine by activating the Ras/Mitogen-activated protein kinase signal transduction cascade. J. Neurosci. 19, 8685–8695.

    PubMed  CAS  Google Scholar 

  • Pilla, M., Perachon, S., Sautel, F., et al. (1999) Selective inhibition of cocaine-seeking behaviour by a partial dopamine D3 receptor agonist. Nature 400, 371–375.

    Article  PubMed  CAS  Google Scholar 

  • Poo, M. M. (2001) Neurotrophins as synaptic modulators. Nat. Rev. Neurosci. 2, 243-#32.

    Article  CAS  Google Scholar 

  • Rhee, S. G. (2001) Regulation of Phosphoinositide-specific phospholipase C. Annu. Rev. Biochem. 70, 281–312.

    Article  PubMed  CAS  Google Scholar 

  • Richtand, N. M., Logue, A. D., Welge, J. A., et al. (2000) The dopamine D3 receptor antagonist nafadotride inhibits development of locomotor sensitization to amphetamine. Brain Res. 867, 239–242.

    Article  PubMed  CAS  Google Scholar 

  • Robbins, T. W., and Everitt, B. J. (1996) Neurobehavioural mechanisms of reward and motivation. Curr. Opin. Neurobiol. 6, 228–236.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, T. E., and Kolb, B. (1997) Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine. J. Neurosci. 17, 8491–38497.

    PubMed  CAS  Google Scholar 

  • Robinson, T. E., and Kolb, B. (1999) Morphine alters the structure of neurons in the nucleus accumbens and neocortex of rats. Synapse 33, 160–162.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, T. E., Gorny, G., Mitton, E., Kolb, B. (2001) Cocaine self-administration alters the morphology of dendrites and dendritic spines in the nucleus accumbens and neocortex. Synapse 39, 257–3266.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, T. E., Gorny, G., Savage, V. R., Kolb, B. (2002) Widespread but regionally specific effects of experimenter- versus self-administered morphine on dendritic spines in the nucleus accumbens, hippocampus, and neocortex of adult rats. Synapse 46, 271–3279.

    Article  PubMed  CAS  Google Scholar 

  • Ross, C. A., MacCumber, M. W., Glatt, C. E., Snyder, S. H. (1989) Brain phospholipase C isozymes: differential mRNA localizations by in situ hybridization. Proc. Natl. Acad. Sci. USA. 86, 2923–2927.

    Article  PubMed  CAS  Google Scholar 

  • Russell, D. (1995) Neurotrophins: mechanisms of action. Neuroscientist 1, 3–36.

    Article  CAS  Google Scholar 

  • Russo-Neustadt, A. (2003) Brain-derived neurotrophic factor, behavior, and new directions for the treatment of mental disorders. Semin. Clin. Neuropsychiatry 8, 109–3118.

    Article  PubMed  Google Scholar 

  • Schuman, E. M. (1999) Neurotrophin regulation of synaptic transmission. Curr. Opin. Neurobiol. 9, 105–109.

    Article  PubMed  CAS  Google Scholar 

  • Segal, R. A., and Greenberg, M. E. (1996) Intracellular signaling pathways activated by neurotrophic factors. Annu. Rev. Neurosci. 19, 463–489.

    PubMed  CAS  Google Scholar 

  • Self, D. W., and Nestler, E. J. (1995) Molecular mechanisms of drug reinforcement and addiction. Annu. Rev. Neurosci. 18, 463–495.

    Article  PubMed  CAS  Google Scholar 

  • Self, D. W., McClenahan, A. W., Beitner-Johnson, D., Terwilliger, R. Z., Nestler, E. J. (1995) Biochemical adaptations in the mesolimbic dopamine system in response to heroin self-administration. Synapse 21, 312–318.

    Article  PubMed  CAS  Google Scholar 

  • Self, D. W., Genova, L. M., Hope, B. T., Barnhart, W. J., Spencer, J. J., Nestler, E. J. (1998) Involvement of cAMP-dependent protein kinase in the nucleus accumbens in cocaine self-administration and relapse of cocaine-seeking behavior. J. Neurosci. 18, 1848–1859.

    PubMed  CAS  Google Scholar 

  • Seroogy, K. B., and Gall, C. M. (1993) Expression of neurotrophins by midbrain dopaminergic neurons. Exp. Neurol. 124, 119–128.

    Article  PubMed  CAS  Google Scholar 

  • Seroogy, K. B., Lundgren, K. H., Tran, T. M., Guthrie, K. M., Isackson, P. J., Gall, C. M. (1994) Dopaminergic neurons in rat ventral midbrain express brain-derived neurotrophic factor and neurotrophin-3 mRNAs. J. Comp. Neurol. 342, 321–334.

    Article  PubMed  CAS  Google Scholar 

  • Sklair-Tavron, L., Shi, W. X., Lane, S. B., Harris, H. W., Bunney, B. S., Nestler, E. J. (1996) Chronic morphine induces visible changes in the morphology of mesolimbic dopamine neurons. Proc. Natl. Acad. Sci. USA. 93, 11202–11207.

    Article  PubMed  CAS  Google Scholar 

  • Sorg, B. A., Chen, S. Y., Kalivas, P.W. (1993) Time course of tyrosine hydroxylase expression after behavioral sensitization to cocaine. J. Pharmacol. Exp. Ther. 266, 424–430.

    PubMed  CAS  Google Scholar 

  • Spenger, C., Hyman, C., Studer, L., et al. (1995) Effects of BDNF on dopaminergic, serotonergic, and GABAergic neurons in cultures of human fetal ventral mesencephalon. Exp. Neurol. 133, 50–63.

    Article  PubMed  CAS  Google Scholar 

  • Sun, X. J., Wang, L. M., Zhang, Y., et al. (1995) Role of IRS-2 in insulin and cytokine signalling. Nature 377, 173–177.

    Article  PubMed  CAS  Google Scholar 

  • Terwilliger, R. Z., Beitner-Johnson, D., Sevarino, K. A., Crain, S. M., Nestler, E. J. (1991) A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function. Brain Res. 548, 100–110.

    Article  PubMed  CAS  Google Scholar 

  • Tomac, A., Lindqvist, E., Lin, L. F., et al. (1995) Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 373, 335–339.

    Article  PubMed  CAS  Google Scholar 

  • Tyler, W. J., Perrett, S. P., Pozzo-Miller, L. D. (2002) The role of neurotrophins in neurotransmitter release. Neuroscientist 8, 524–531.

    Article  PubMed  CAS  Google Scholar 

  • Valjent, E., Corvol, J. C., Pages, C., Besson, M. J., Maldonado, R., Caboche, J. (2000) Involvement of the extracellular signal-regulated kinase cascade for cocaine-rewarding properties. J. Neurosci. 20, 8701–8709.

    PubMed  CAS  Google Scholar 

  • Vorel, S. R., Ashby, C. R., Jr., Paul, M., et al. (2002) Dopamine D3 receptor antagonism inhibits cocaine-seeking and cocaine-enhanced brain reward in rats. J. Neurosci. 22, 9595–9603.

    PubMed  CAS  Google Scholar 

  • Wallace, D. R., Mactutus, C. F., Booze, R. M. (1996) Repeated intravenous cocaine administration: locomotor activity and dopamine D2/D3 receptors. Synapse 23, 152–163.

    Article  PubMed  CAS  Google Scholar 

  • Wise, R. A. (1996) Neurobiology of addiction. Curr. Opin. Neurobiol. 6, 243–251.

    Article  PubMed  CAS  Google Scholar 

  • Wolf, D. H., Numan, S., Nestler, E. J., Russell, D. S. (1999) Regulation of phospholipase Cgamma in the mesolimbic dopamine system by chronic morphine administration. J Neurochemistry 73, 1520–1528.

    Article  CAS  Google Scholar 

  • Wolf, M. E. (2002) Addiction: making the connection between behavioral changes and neuronal plasticity in specific pathways. Mol. Intervent. 2, 146–157.

    Article  CAS  Google Scholar 

  • Wolf, M. E. (2003) LTP may trigger addiction. Mol. Intervent. 3, 248–252.

    Article  CAS  Google Scholar 

  • Wujek, J. R., Lasek, R. J., Gambetti, P. (1986) The amount of slow axonal transport is proportional to the radial dimensions of the axon. J. Neurocytol. 15, 75–83.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, K., and Nabeshima, T. (2003) Brain-derived neurotrophic factor/TrkB signaling in memory processes. J. Pharmacol. Sci. 91, 267–270.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J. Nestler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolaños, C.A., Nestler, E.J. Neurotrophic mechanisms in drug addiction. Neuromol Med 5, 69–83 (2004). https://doi.org/10.1385/NMM:5:1:069

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/NMM:5:1:069

Index Entries

Navigation