Skip to main content
Log in

Methamphetamine-induced TNF-α gene expression and activation of AP-1 in discrete regions of mouse brain

Potential role of reactive oxygen intermediates and lipid peroxidation

  • Original Research
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Cellular and molecular mechanisms of methamphetamine (METH)-induced neurotoxicity may involve alterations of cellular redox status and induction of inflammatory genes. To study this hypothesis, molecular signaling pathways of METH-induced inflammatory responses via activation of redox-sensitive transcription factors were investigated in discrete regions (corpus striatum, frontal cortex, and hippocampus) of mouse brain. Intraperitoneal injection of METH at a dose of 10 mg/kg body weight resulted in a significant increase in oxidative stress, as measured by 2,7-dichlorofluorescein (DCF) fluorescence assay, thiobarbituric acid-reactive substances (TBARS), and total glutathione levels. Glutathione peroxidase activity was also significantly increased after METH exposure. In addition, DNA binding activity of activator protein-1 (AP-1), a redox-responsive transcription factor, was increased in all studied brain regions in response to METH treatment. Because AP-1 is known to regulate expression of inflammatory genes, levels of TNF-α mRNA were also studied. Expression of the tumor necrosis factor-α (TNF-α) gene was induced 3 h after METH injection and remained elevated for up to 6h of METH exposure. In addition, stimulation of the TNF-α gene was associated with increased TNF-α protein production in the frontal cortex. These results suggest that METH-induced disturbances in cellular redox status and that activation of AP-1 can play a critical role in signaling pathways leading to upregulation of inflammatory genes in vivo. Furthermore, these data provide evidence for the role of oxidative stress in the neurotoxic effects of METH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acikgoz O., Gonenc S., Kayatekin B. M., Pekcetin C., Uysal N., Dayi A., Semin I., and Gure A. (2000) The effects of single dose of methamphetamine on lipid peroxidation levels in the rat striatum and prefrontal cortex. Eur. Neuropsychopharmacol. 10, 415–418.

    Article  PubMed  CAS  Google Scholar 

  • Akiyama K., Ishihara T., and Kashihara K. (1996) Effect of acute and chronic administration of methamphetamine on activator protein-1 binding activities in the rat brain regions. Ann. NY Acad. Sci. 801, 13–28.

    Article  PubMed  CAS  Google Scholar 

  • Angel P. and Karin M. (1991) The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim. Biophys. Acta. 1072, 129–157.

    PubMed  CAS  Google Scholar 

  • Arrigo A. P. (1999) Gene expression and the thiol redox state. Free Radic. Biol. Med. 27, 936–944.

    Article  PubMed  CAS  Google Scholar 

  • Asanuma M. and Cadet J. L. (1998) Methamphetamine-induced increase in striatal NF kappa B DNA binding activity is attenuated in superoxide dismutase transgenic mice. Mol. Brain Res. 60, 305–309.

    Article  PubMed  CAS  Google Scholar 

  • Asanuma M., Hayashi T., Ordonez S. V., Ogawa N., and Cadet J. L. (2000) Direct interactions of methamphetamine with the nucleus. Brain Res. Mol. Brain Res. 80, 237–243.

    Article  PubMed  CAS  Google Scholar 

  • Baker M. A., Cerniglia G. J., and Zaman A. (1990) Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Anal. Biochem. 190, 360–365.

    Article  PubMed  CAS  Google Scholar 

  • Beckman J. S. and Koppenol W. H. (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am. J. Physiol. 271, C1424-C1437.

    PubMed  CAS  Google Scholar 

  • Beg A. A., Finco T. S., Nantermet P. V., and Baldwin A. S. Jr (1993) Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of IκB alpha: a mechanism for NFκB activation. Mol. Cell. Biol. 13, 3301–3310.

    PubMed  CAS  Google Scholar 

  • Berman S. B. and Hastings T. G. (1999) Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson’s disease. J. Neurochem. 73, 1127–1137.

    Article  PubMed  CAS  Google Scholar 

  • Beutler E. (1989) Nutritional and metabolic aspects of glutathione. Annu. Rev. Nutr. 9, 287–302.

    Article  PubMed  CAS  Google Scholar 

  • Brown L. A. (1994) Glutathione protects signal transduction in type II cells under oxidant stress. Am. J. Physiol. 266, L172-L177.

    PubMed  CAS  Google Scholar 

  • Cadet J. L., Sheng P., Ali S., Rothman R., Carlson E., and Epstein C. (1994) Attenuation of methamphetamine-induced neurotoxicity in copper/zinc superoxide dismutase transgenic mice. J. Neurochem. 62, 380–383.

    Article  PubMed  CAS  Google Scholar 

  • Couceyro P. and Douglass J. (1995) Precipitated morphine withdrawal stimulates multiple activator protein-1 signaling pathways in rat brain. Mol. Pharmacol. 47, 29–39.

    PubMed  CAS  Google Scholar 

  • De Vito M. J. and Wagner G. C. (1989) Methamphetamine-induced neuronal damage: a possible role for free radicals. Neuropharmacology 28, 1145–1150.

    Article  PubMed  Google Scholar 

  • Desai A., Huang X., and Warren J. S. (1999) Intracellular glutathione redox status modulates MCP-1 expression in pulmonary granuloamatous vasculitis. Lab. Invest. 79, 837–847.

    PubMed  CAS  Google Scholar 

  • Eisch A. J. and Marshall J. F. (1998) Methamphetamine neurotoxicity: dissociation of striatal dopamine terminal damage from parietal cortical cell body injury. Synapse 30, 433–445.

    Article  PubMed  CAS  Google Scholar 

  • Flohe L. and Gunzler W. A. (1984) Glutathione Peroxidase, in Methods in Enzymology (Packer L., ed.), Academic Press, Orlando, FL, pp. 115–121.

    Google Scholar 

  • Fumagalli F., Gainetdinov R. R., Valenzano K. J., and Caron M. J. (1998) Role of dopamine transporter in methamphetamine-induced neurotoxicity: evidence from mice lacking the transporter. J. Neurosci. 18, 4861–4869.

    PubMed  CAS  Google Scholar 

  • Gibb J. W. and Kogan F. J. (1979) Influence of dopamine synthesis on methamphetamine-induced changes in striatal and adrenal tyrosine hydroxylase activity. Naunyn. Schmiedebergs. Arch. Pharmacol. 310, 185–187.

    Article  PubMed  CAS  Google Scholar 

  • Giovanni A., Liang L. P., Hastings T. G., and Zigmond M. J. (1995) Estimating hydroxyl radical content in rat brain using systemic and intraventricular salicylate: impact of methamphetamine. J. Neurochem. 64, 1819–1825.

    Article  PubMed  CAS  Google Scholar 

  • Glowinski J. and Iversen L. L. (1966) Regional studies of catecholamines in the rat brain. I. The disposition of [3H] norepinephrine, [3H] dopamine and [3H] dopa in various regions of the brain. J. Neurochem. 13, 655–669.

    Article  PubMed  CAS  Google Scholar 

  • Gluck M. R., Moy L. Y., Jayatilleke E., Hogan K. A., Manzino L., and Sonsalla P., K. (2001) Parallel increases in lipid and protein oxidative markers in several mouse brain regions after methamphetamine treatment. J. Neurochem. 79, 152–160.

    Article  PubMed  CAS  Google Scholar 

  • Harold C., Wallace T., Friedman R., Gudelsky G., and Yamamoto B. (2000) Methamphetamine selectively alters brain glutathione. Eur. J. Pharmacol. 400, 99–102.

    Article  PubMed  CAS  Google Scholar 

  • Hebert M. A. and O’Callaghan J. P. (2000) Protein phosphorylation cascades associated with methamphetamine-induced glial activation. Ann. NY Acad. Sci. 914, 238–262.

    Article  PubMed  CAS  Google Scholar 

  • Hirata H., Ladenheim B., Carlson E., Epstein C., and Cadet J. L. (1996) Autoradiographic evidence for methamphetamine-induced straital dopaminergic loss in mouse brain: attenuation in CuZn-Superoxide dismutase transgenic mice. Brain Res. 714, 95–103.

    Article  PubMed  CAS  Google Scholar 

  • Hoyt K. R., Reynolds I. J., and Hastings T. G. (1997) Mechanisms of dopamine-induced cell death in cultured rat forebrain neurons: interactions with and differences from glutamate-induced cell death. Exp. Neurol. 143, 269–281.

    Article  PubMed  CAS  Google Scholar 

  • Hughes P. and Dragunow M. (1995) Induction of immediate-early genes and the control of neurotransmitter-regulated gene expression within the nervous system. Pharmacol. Rev. 47, 133–178.

    PubMed  CAS  Google Scholar 

  • Imam S. Z., el-Yazal J., Newport G. D., Itzhak Y., Cadet J. L., Slikker W. Jr., and Ali S. F. (2001a) Methamphetamine-induced dopaminergic neurotoxicity: role of peroxynitrite and neuroprotective role of antioxidants and peroxynitrite decomposition catalysts. Ann. NY Acad. Sci. 939, 366–380.

    Article  PubMed  CAS  Google Scholar 

  • Imam S. Z., Newport G. D., Itzhak Y., Cadet J. L., Islam F., Slikker W. Jr., and Ali S. F. (2001b) Peroxynitrite plays a role in methamphetamine-induced dopaminergic neurotoxicity: evidence from mice lacking neuronal nitric oxide synthase gene or over-expressing copper-zinc superoxide dismutase. J. Neurochem. 76, 745–749.

    Article  PubMed  CAS  Google Scholar 

  • Itzhak Y. and Ali S. F. (1996) The neuronal nitric oxide synthase inhibitor, 7-nitroindazole, protects against methamphetamine-induced neurotoxicity in vivo. J. Neurochem. 67, 1770–1773.

    Article  PubMed  CAS  Google Scholar 

  • Iwata-Ichikawa E., Kondo Y., Miyazaki I., Asanuma M., and Ogawa N. (1999) Glial cells protect neurons against oxidative stress via transcriptional up-regulation of the glutathione synthesis. J. Neurochem. 72, 2334–2344.

    Article  PubMed  CAS  Google Scholar 

  • Jayanthi S., Ladenheim B., and Cadet J. L. (1998) Methamphetamine-induced changes in antioxidant enzymes and lipid peroxidation in copper/zinc-superoxide dismutase transgenic mice. Ann. NY Acad. Sci. 844, 92–102.

    Article  PubMed  CAS  Google Scholar 

  • Karin, M. (1995) The regulation of AP-1 activity by mitogen-activated protein kinases. J. Biol. Chem. 270, 16,483–16,486.

    CAS  Google Scholar 

  • Lakshminarayanan V., Drab-Weiss E. A., and Roebuck K. A. (1998) H2O2 and tumor necrosis factor-alpha induce differential binding of the redox-responsive transcription factors AP-1 and NF-kappaB to the interleukin-8 promoter in endothelial and epithelial cells J. Biol. Chem. 273, 32,670–32,678.

    Article  CAS  Google Scholar 

  • Lee Y. W., Hennig B., Yao J., and Toborek M. (2001) Methamphetamine induces AP-1 and NF-κB binding and transactivation in human brain endothelial cells. J. Neurosci. Res. 66, 583–591.

    Article  PubMed  CAS  Google Scholar 

  • Love S. (1999) Oxidative stress in brain ischemia. Brain Pathol. 9, 119–131.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P., Barger S. W., Begley J. G., and Mark R. J. (1995) Calcium, free radicals, and excitotoxic neuronal death in primary cell culture. Meth. Cell Biol. 46, 187–215.

    CAS  Google Scholar 

  • McCann U. D., Wong D. F., Yokoi F., Villemagne V., Dannals R. F., and Ricaurte G. A. (1998) Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathinone users: evidence from positron emission tomography studies with [11C] WIN-35,428 J. Neurosci. 18, 8417–8422.

    PubMed  CAS  Google Scholar 

  • Miller M. A. (1991) Trends and patterns of methamphetamine smoking in Hawaii. NIDA Res. Monogr. 115, 72–83.

    PubMed  CAS  Google Scholar 

  • Moszczynska A., Turenne S., and Kish S. J. (1998) Rat striatal levels of the antioxidant glutathione are decreased following binge administration of methamphetamine. Neurosci. Lett. 255, 49–52.

    Article  PubMed  CAS  Google Scholar 

  • Nash J. F. and Yamamoto B. K. (1992) Methamphetamine neurotoxicity and striatal glutamate release: comparision to 3,4-methylenedioxymethamphetamine. Brain Res. 581, 237–243.

    Article  PubMed  CAS  Google Scholar 

  • O’Callaghan J. P. and Miller D. B. (1994) Neurotoxicity profiles of substituted amphetamines in the C57 BL/6 J mouse. J. Pharmacol. Exp. Ther. 270, 741–751.

    PubMed  CAS  Google Scholar 

  • Ohkawa H., Ohishi N., and Yagi K. (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351–358.

    Article  PubMed  CAS  Google Scholar 

  • Premkumar D. R., Adhikary G., Overholt J. L., Simonson M. S., Cherniack N. S., and Prabhakar N. R. (2000) Intracellular pathways linking hypoxia to activation of c-fos and AP-1. Adv. Exp. Med. Biol. 475, 101–109.

    PubMed  CAS  Google Scholar 

  • Pulse Check. (2000) Trends in drug abuse, mid-year 2000. Office of National Drug Control Policy. Published online at www.whitehousedrugpolicy.gov.

  • Rahman I. and MacNee W. (1999) Lung Glutathione and oxidative stress: implications in cigarette smoke-induced airways disease. Am. J. Physiol. 277, L1067-L1088.

    PubMed  CAS  Google Scholar 

  • Rhoades K. L., Golub S. H., and Economou J. S. (1992) The regulation of the human tumor necrosis factor alpha promoter region in macrophage, T cell, and B cell lines. J. Biol. Chem. 267, 22,102–22,107.

    CAS  Google Scholar 

  • Richman P. G. and Meister A. (1975) Regulation of gamma-glutamyl synthetase by nonallosteric feedback inhibition by glutathione. J. Biol. Chem. 250, 1422–1426.

    PubMed  CAS  Google Scholar 

  • Schreck R., Albermann K., and Baeuerle P. A. (1992) Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Radic. Res. Commun. 17, 221–237.

    PubMed  CAS  Google Scholar 

  • Seiden L. S. (1985) Methamphetamine: toxicity to dopaminergic neurons. NIDA Res. Monogr. 62, 100–116.

    PubMed  CAS  Google Scholar 

  • Seiden L. S. and Sabol K. E. (1996) Methamphetamine and methylenedioxymethamphetamine neurotoxicity: possible mechanisms of cell destruction. NIDA Res. Monogr. 163, 251–276.

    PubMed  CAS  Google Scholar 

  • Shandra A. A., Godlevsky L. S., Vastyanov R. S., Oleinik A. A., Konovalenko V. L., Rapoport E. N., and Korobka N. N. (2002) The role of TNF-α in amygdala kindled rats. Neurosci. Res. 42, 147–153.

    Article  PubMed  CAS  Google Scholar 

  • Shaw K. P. (1999) Human methamphetamine-related fatalities in Taiwan during 1991–1996. J. Forensic Sci. 44, 27–31.

    PubMed  CAS  Google Scholar 

  • Sheng P., Wang X. B., Ladenheim B., Epstein C., and Cadet J. L. (1996) AP-1 DNA binding activation by methamphetamine involves oxidative stress. Synapse 24, 213–217.

    Article  PubMed  CAS  Google Scholar 

  • Smith T. S., Parker W. D. Jr., and Bennett J. P. Jr. (1994) L-Dopa increases nigral production of hydroxyl radicals in vivo: potential L-dopa toxicity. Neuroreport 5, 1009–1011.

    Article  PubMed  CAS  Google Scholar 

  • Socci D. J., Bjugstad K. B., Jones H. C., Pattisapu J. V., and Arendash G. W. (1999) Evidence that oxidative stress is associated with the pathophysiology of inherited hydrocephalus in the H-Tx rat model. Exp. Neurol. 155, 109–117.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava S., Weitzmann M. N., Cenci S., Ross F. P., Adler S., and Pacifici R. (1999) Estrogen decreases TNF gene expression by blocking JNK activity and the resulting production of c-Jun and JunD. J. Clin. Invest. 104, 503–513.

    Article  PubMed  CAS  Google Scholar 

  • Stephans S. E. and Yamamoto B. K. (1994) Methamphetamine-induced neurotoxicity: roles for glutamate and dopamine efflux. Synapse 17, 203–209.

    Article  PubMed  CAS  Google Scholar 

  • Suttorp N., Toepfer W., and Roka L. (1986) Antioxidant defense mechanisms of endothelial cells: glutathione redox cycle versus catalase. Am. J. Physiol. 252, C671-C680.

    Google Scholar 

  • Toborek M., Lee Y. W., Kaiser S., and Hennig B. (2002) Inflammatory properties of fatty acids, in Methods in Enzymology, vol 352 (Sen, C. K. and Packer L., eds.), Academic Press, pp. 198–219.

  • Villemagne V., Yuan J., Wong D. F., Dannals R. F., Hatzidimitriou G., Mathews W. B., et al. (1998) Brain dopamine neurotoxicity in baboons treated with doses of methamphetamine comparable to those recreationally abused by humans: evidence from [11C]WIN-35,428 positron emission tomography studies and direct in vitro determinations. J. Neurosci. 18, 419–427.

    PubMed  CAS  Google Scholar 

  • Wilson J. M., Kalasinsky K. S., Levey A. I., Bergeron C., Reiber G., Anthony R. M., et al. (1996) Straital dopamine nerve terminal markers in human, chronic methamphetamine users. Nat. Med. 2, 699–703.

    Article  PubMed  CAS  Google Scholar 

  • Woods J. S., Kavanagh T. J., Corral J., Reese A. W., Diaz D., and Ellis M. E. (1999) The role of glutathione in chronic adaptation to oxidative stress: studies in a normal rat kidney epithelial (NRK52E) cell model of sustained upregulation of glutathione biosynthesis. Toxicol. Appl. Pharmacol. 160, 207–216.

    Article  PubMed  CAS  Google Scholar 

  • Wrona M. Z., Yang Z., Zhang F., and Dryhurst G. (1997) Potential new insights into the molecular mechanisms of methamphetamine-induced neurodegeneration. NIDA Res. Monogr. 173, 146–174.

    PubMed  CAS  Google Scholar 

  • Xanthoudakis S., Miao G., Wang F., Pan Y. C., and Curran T. (1992) Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. EMBO. J. 11, 3323–3335.

    PubMed  CAS  Google Scholar 

  • Yamamoto B. K. and Zhu W. (1998) The effects of methamphetamine on the production of free radicals and oxidative stress. J. Pharmacol. Exp. Ther. 287, 107–114.

    PubMed  CAS  Google Scholar 

  • Yao J. N., Mackman N., Edgington T. S., and Fan S. T. (1997) Lipopolysaccharide induction of the tumor necrosis factor-alpha promoter in human monocytic cells. Regulation by Egr-1, c-Jun, and NFκB transcription factors. J. Biol. Chem. 272, 17,795–17,801.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Toborek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flora, G., Lee, Y.W., Nath, A. et al. Methamphetamine-induced TNF-α gene expression and activation of AP-1 in discrete regions of mouse brain. Neuromol Med 2, 71–85 (2002). https://doi.org/10.1385/NMM:2:1:71

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/NMM:2:1:71

Index Entries

Navigation