Skip to main content
Log in

Methods for quantifying the informational structure of sensory and motor data

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Embodied agents (organisms and robots) are situated in specific environments sampled by their sensors and within which they carry out motor activity. Their control architectures or nervous systems attend to and process streams of sensory stimulation, and ultimately generate sequences of motor actions, which in turn affect the selection of information. Thus, sensory input and motor activity are continuously and dynamically coupled with the surrounding environment. In this article, we propose that the ability of embodied agents to actively structure their sensory input and to generate statistical regularities represents a major functional rationale for the dynamic coupling between sensory and motor systems. Statistical regularities in the multimodal sensory data relayed to the brain are critical for enabling appropriate developmental processes, perceptual categorization, adaptation, and learning. To characterize the informational structure of sensory and motor data, we introduce and illustrate a set of univariate and multivariate statistical measures (available in an accompanying Matlab toolbox). We show how such measures can be used to quantify the information structure in sensory and motor channels of a robot capable of saliency-based attentional behavior, and discuss their potential importance for understanding sensorimotor coordination in organisms and for robot design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, W. and Sporns, O. (2003) An embodied model of reward conditioning. Adaptive Behav. 11(2), 43–159.

    Google Scholar 

  • Almassy, N., Edelman, G. M., and Sporns, O. (1998) Behavioral constraints in the development of neuronal properties: A cortical model embedded in a real world device. Cereb. Cortex 8, 346–361.

    Article  PubMed  CAS  Google Scholar 

  • Barlow, H. B. (1961) Possible principles underlying the transformation of sensory messages. In: Sensory Communication. Rosenblith W. A. (ed.) MIT Press, Cambridge, MA, pp. 217–234.

    Google Scholar 

  • Barrow, H. G. (1987) Learning receptive fields. Proc. of First Ann. Conf. on Neural Networks, vol. 15. pp. 115–121.

    Google Scholar 

  • Barlow, H. B. (2001) The exploitation of regularities in the environment by the brain. Behav. Brain Sci. 24, 602–607.

    Article  PubMed  CAS  Google Scholar 

  • Bell, A. J. and Sejnowski, T. J. (1997) The independent components of natural scenes are edge filters. Vision Res. 37, 3327–3338.

    Article  PubMed  CAS  Google Scholar 

  • Betsch, B. Y., Einhauser, W., Kording, K. P., and Konig, P. (2004) The world from a cat’s perspective—statistics of natural videos. Biol. Cybern. 90, 41–50.

    Article  PubMed  Google Scholar 

  • Bishop, C. M. (1995) Neural Networks for Pattern Recognition. Clarendon Press, Oxford.

    Google Scholar 

  • De Silva, V. (2004) Personal communication.

  • Dong, D. W. and Atick, J. J. (1995) Statistics of natural time-varying images. Netw. Comput. Neural Syst. 6(3), 345–358.

    Article  Google Scholar 

  • Field, D. J. (1987) Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. A 4, 2379–2394.

    Article  PubMed  CAS  Google Scholar 

  • Field, D. J. (1999) Wavelets, vision and the statistics of natural scenes. Phil. Trans. R. Soc. Lond. A857, 2527–2542.

    Article  Google Scholar 

  • Grassberger, P. (1988) Finite sample corrections to entropy and dimension estimates. Phys. Lett. A 128, 369.

    Article  Google Scholar 

  • Hamilton, J. (1994) Time Series Analysis. Princeton University Press, Princeton, NJ, USA.

    Google Scholar 

  • Iida, F., Pfeifer, R., Steels, L., and Kuniyoshi, Y. (eds.) (2004) Embodied Artifical Intelligence, LNCS 3139. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Isliker, H. and Kurths, J. (1993) A test for stationarity: finding parts in time series apt for correlation dimensions estimate. Int. J. Bifurcation Chaos 3, 1573–1579.

    Article  Google Scholar 

  • Itti, L., Koch, C., and Niebur, E. (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259.

    Article  Google Scholar 

  • Karklin, Y. and Lewicki, M. S. (2003) Learning higher-order structures in natural images. Netw. Comput. Neural Syst. 14, 483–499.

    Article  Google Scholar 

  • Kramer, M. (1991) Nonlinear principal component analysis using autoassociative neural networks. AlChE J. 37, 233–243.

    CAS  Google Scholar 

  • Krichmar, J. L., Seth, A. K., Nitz, D. A., Fleischer, J. G., and Edelman, G. M. (2005) Spatial navigation and causal analysis in a brain-based device having detailed cortical-hippocampal interactions. Neuroinformatics 3(3).

  • Lichtensteiger, L. and Pfeifer, R. (2002) An optimal sensory morphology improves adaptability of neural network controllers. In: Dorronsoro J. R. (ed.) Proc. of Int. Conf. on Artificial Neural Networks. LNCS 2451. Springer-Verlag, Heidelberg, pp. 850–855.

    Google Scholar 

  • Lungarella, M. and Pfeifer, R. (2001) Robots as cognitive tools: Information-theoretic analysis of sensory-motor data. Proc. of First Int. Conf. on Humanoid Robots, pp. 245–252.

  • Lungarella, M. and Sporns, O. (2005) Information self-structuring: key principle for development and learning. Proc. Fourth Int. Conf. Devel. Learning, in press.

  • Metta, G. and Fitzpatrick, P. (2003) Early integration of vision and manipulation. Adaptive Behav. 11(2), 109–128.

    Article  Google Scholar 

  • Nolfi, S. (2002) Power and limit of reactive agents. Neurocomputing 49, 119–145.

    Article  Google Scholar 

  • Olshausen, B. and Field, D. J. (1996) Emergence of simple-cell receptive-field properties by learning a sparse code for natural images. Nature 381, 607–609.

    Article  PubMed  CAS  Google Scholar 

  • Olsson, L. A., Nehaniv, C. L., and Polani, D. (2004) The effects on visual information in a robot in environments with oriented contours. In: Proceedings of the Fourth International Workshop on Epigenetic Robotics. Metta, G. and Berthouze, L. (eds.) pp. 83–88.

  • Pfeifer, R. and Scheier, C. (1999) Understanding Intelligence. MIT Press, Cambridge, MA.

    Google Scholar 

  • Rieke, F., Bodnar, D. A., and Bialek, W. (1995) Naturalistic stimuli increase the rate and efficiency of information transmission by primary auditory afferents. Proc. R. Soc. Lond. B 262, 259–265.

    Article  CAS  Google Scholar 

  • Roulston, M. S. (1999) Estimating the errors on measured entropy and mutual information. Physica D 125, 285–294.

    Article  Google Scholar 

  • Scheier, C., Pfeifer, R., and Kuniyoshi, Y. (1998) Embedded neural networks: exploiting constraints. Neural Netw. 11(7/8), 1551–1569.

    Article  PubMed  Google Scholar 

  • Schreiber, T. (1997) Detecting and analyzing nonstationarity in a time series using nonlinear cross-prediction. Phys. Rev. Lett. 78(5), 843–847.

    Article  CAS  Google Scholar 

  • Seth, A. K. and Edelman, G. M. (2004) Environment and behavior influence the complexity of evolved neural networks. Adaptive Behav. 12(1), 5–20.

    Article  Google Scholar 

  • Seth, A. K. Causal connectivity of evolved neural networks during behavior. Netw. Comput. Neural Syst., in press.

  • Shannon, C. E. and Weaver, W. (1949) The Mathematical Theory of Communication. University of Illinois Press, Chicago, IL, USA.

    Google Scholar 

  • Silverman, B. W. (1986) Density Estimation for Statistics and Data Analysis. Chapman and Hall, London.

    Google Scholar 

  • Simoncelli, E. and Olshausen, B. (2001) Natural image statistics and neural representation. Annu. Rev. Neurosci. 24, 1193–1216.

    Article  PubMed  CAS  Google Scholar 

  • Simonoff, J. S. (1996) Smoothing Methods in Statistics. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Sporns, O., Tononi, G., and Edelman, G. M. (2000) Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb. Cortex 10, 127–141.

    Article  PubMed  CAS  Google Scholar 

  • Sporns, O. and Pegors, T. K. (2003) Generating structure in sensory data through coordinated motor activity. Proc. of Int. Conf. on Neural Networks 2796.

  • Sporns, O. and Pegors, T. K. (2004) Information-theoretic aspects of embodied artificial intelligence. In: Embodied Artificial Intelligence, LNCS 3139. Springer-Verlag, Heidelberg. Iida, F., Pfeifer, R., Steels, L., and Kuniyoshi, Y. (eds.) pp. 74–85.

    Google Scholar 

  • Tarapore, D., Lungarella, M., and Gomez, G. (2005) Quantifying patterns of agent-environment interaction. Robotics and Autonomous Systems (in press).

  • Te Boekhorst, R., Lungarella, M., and Pfeifer, R. (2003) Dimensionality reduction through sensory-motor coordination. In: Proc. of Joint. Int. Conf. on Artificial Neural Networks and Neural Information Processing, LNCS. 2714, Kanyak, O., Alpaydin, E., Oja, E., and Xu, L. (eds.) pp. 496–503.

  • Tenenbaum, J., de Silva, V., and Langford, J. (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323.

    Article  PubMed  CAS  Google Scholar 

  • Thelen, E. and Smith, L. (1994) A Dynamic Systems Approach to the Development of Cognition and Action. MIT Press, Cambridge, MA, USA.

    Google Scholar 

  • Tononi, G., Sporns, O., and Edelman, G. M. (1994) A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc. Natl. Acad. Sci. USA 91, 5033–5037.

    Article  PubMed  CAS  Google Scholar 

  • Tononi, G., Sporns, O., and Edelman, G. M. (1996) A complexity measure for selective matching of signals by the brain. Proc. Natl. Acad. Sci. USA 93, 3422–3427.

    Article  PubMed  CAS  Google Scholar 

  • Tononi, G., Edelman, G. M., and Sporns, O. (1998) Complexity and coherency: integrating information in the brain. Trends Cognitive Sci. 2, 474–484.

    Article  Google Scholar 

  • Torralba, A. and Oliva, A. (2003) Statistics of natural images. Netw. Comput. Neural Syst. 14, 391–412.

    Article  Google Scholar 

  • van der Schaaf, A. and van Hateren, J. H. (1996) Modeling the power spectra of natural images: Statistics and information. Vision Res. 36(17), 2759–2770.

    Article  PubMed  Google Scholar 

  • Webb, A. (1999) Statistical Pattern Recognition. Arnold, London.

    Google Scholar 

  • Webber, C. J. (1991) Competitive learning, natural images, and the self-organization of cortical cells. Netw. Comput. Neural Syst. 2, 169–187.

    Article  Google Scholar 

  • Yu, C. and Ballard, D. H. (2004) A multimodal learning interface for grounding spoken language in sensory perceptions. ACM Trans. Appl. Perceptions 1(1), 57–80.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Sporns.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lungarella, M., Pegors, T., Bulwinkle, D. et al. Methods for quantifying the informational structure of sensory and motor data. Neuroinform 3, 243–262 (2005). https://doi.org/10.1385/NI:3:3:243

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NI:3:3:243

Index Entries

Navigation