Skip to main content
Log in

A modeling environment with three-dimensional morphology, A-Cell-3D, and Ca2+ dynamics in a spine

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

A-Cell-3D was developed to model and simulate a neuron with three-dimensional (3D) morphology utilizing graphic user interface (GUI)-based operations. A-Cell-3D generates and compartmentalizes 3D morphologies of a whole cell or a part of a cell based on a small number of parameters. A-Cell-3D has functions for embedding biochemical reactions and electrical equivalent circuits in the generated 3D morphology, automatically generating a simulation program for spatiotemporal numerical integration, and for visualizing the simulation results. A-Cell-3D is a free software and will be a powerful tool for both experimental and theoretical researchers in modeling and simulating neurons.

The Ca2+ dynamics in a dendritic spine and its parent dendrite were modeled and simulated to demonstrate the capabilities of A-Cell-3D. The constructed reaction-diffusion model comprised Ca2+ entry at the spine head, Ca2+ buffering by endogenous buffers, Ca2+ extrusion, and Ca2+ diffusion with or without exogenous Ca2+ indicator dyes. A simulation program was generated by A-Cell-3D, and differential equations were numerically integrated by the fourth-order Runge-Kutta method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allbritton, N. L., Meyer, T., and Stryer, L. (1992) Range of messenger action of calcium ion and inositol 1,4,5-triphosphate. Science 258, 1812–1815.

    Article  PubMed  CAS  Google Scholar 

  • Bhalla, U. S. and Iyengar, R. (1999) Emergent properties of networks of biological signaling pathways. Science 283, 381–387.

    Article  PubMed  CAS  Google Scholar 

  • Burnashev, N., Zhou, Z., and Neher, E. (1995) Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. J. Physiol. 485, 403–418.

    PubMed  CAS  Google Scholar 

  • Connor, J. A., Wadman, W. J., Hockberger, P. E., and Wong, R. K. S. (1988) Sustained dendritic gradients of Ca2+ induced by excitatory amino acids in CA1 hippocampal neurons. Science 240, 649–653.

    Article  PubMed  CAS  Google Scholar 

  • De Schutter, E. and Bower, J. M. (1993) Sensitivity of synaptic plasticity to the Ca2+ permeability of NMDA channels: a model of long-term potentiation in hippocampal neurons. Neural Comp. 5, 681–694.

    Article  Google Scholar 

  • De Schutter, E. and Bower, J. M. (1994a) An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice. J. Neurophysiol. 71, 375–400.

    PubMed  Google Scholar 

  • De Schutter, E. and Bower, J. M. (1994b) An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses. J. Neurophysiol. 71, 401–419.

    PubMed  Google Scholar 

  • De Schutter, E. and Smolen, P. (1998) Calcium dynamics in large neuronal models. In: Methods in Neuronal Modeling, 2nd edn. Koch, C. and Segev, I. (eds.) The MIT Press, Cambridge, MA, pp.211–250.

    Google Scholar 

  • Dosemeci, A. and Albers, R. W. (1996) A mechanism for synaptic frequency detection through autophosphorylation of Cam kinase II. Biophys. J. 70, 2493–2501.

    Google Scholar 

  • Fischer, M., Kaech, S., Knutti, D., and Matus, A. (1998) Rapid actin-based plasticity in dendritic spines. Neuron 20, 847–854.

    Article  PubMed  CAS  Google Scholar 

  • Gabso, M., Neher, E., and Spira, M. E. (1997) Low mobility of the Ca2+ buffers in axons of cultured Aplysia neurons. Neuron 18, 473–481.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, J. H., Tamas, G., Aronov, D., and Yuste, R. (2003) Calcium microdomains in aspiny dendrites. Neuron 40, 807–821.

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa, K. (1994) Transduction steps which characterize retinal cone photocurrent induced by flash stimuli. Neurosci. Res. 20, 337–343.

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa, K. (1996) Modeling and analysis of spatio-termporal change in [Ca2+]i in a retinal rod outer segment. Neurosci. Res. 25, 137–144.

    Google Scholar 

  • Ichikawa, K. (2001) A-Cell: graphical user interface for the construction of biochemical reaction models. Bioinformatics 17, 483–484.

    Article  PubMed  CAS  Google Scholar 

  • Kamiyama, Y., Ogura, T., and Usui S. (1996) Ionic current model of the vertebrate rod photoreceptor. Vis. Res. 36, 4059–4068.

    Article  Google Scholar 

  • Koch, C. and Zador, A. (1993) The function of dendritic spines: devices subserving biochemical rather than electrical compartmentalization. J. Neurosci. 13, 413–422.

    PubMed  CAS  Google Scholar 

  • Koch, C. (1999) Biophysics of Computation. Oxford University Press, New York.

    Google Scholar 

  • Lamprecht, R. and LeDoux, J. (2004) Structural plasticity and memory. Nat. Rev. Neurosci. 5, 45–54.

    Article  PubMed  CAS  Google Scholar 

  • Lisman, J.E. (1989) A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc. Natl. Acad. Sci. USA 86, 9574–9578.

    Article  PubMed  CAS  Google Scholar 

  • Majewska, A., Tashiro, A., and Yuste, R. (2000) Regulation of spine calcium dynamics by rapid spine motility. J. Neurosci. 20, 8262–8268.

    PubMed  CAS  Google Scholar 

  • Maravall, M., Mainen, Z. F., Sabatini, B. L., and Svoboda, K. (2000) Estimating intracellular calcium concentrations and buffering without wavelength ratioing. Biophys. J. 78, 2655–2667.

    Article  PubMed  CAS  Google Scholar 

  • Mell, B. W. (1993) Synaptic integration in an excitable dendritic tree. J. Neurophysiol. 70, 1086–1101.

    Google Scholar 

  • Okamoto, H. and Ichikawa, K. (2000) Switching characteristics of a model for biochemical-reaction network describing autophosphorylation versus dephosphorylation of Ca2+/calmodulin-dependent protein kinase II. Bio. Cyber. 82, 35–47.

    Article  CAS  Google Scholar 

  • Quandroni, R. and Knopfel, T. (1994) Compartmental models of type A and type B guinea pig medial vestibular neurons. J. Neurophysiol. 72, 1911–1924.

    Google Scholar 

  • Rogers, M., Dani, J. A., and Nozawa, M. (1995) Comparison of quantitative calcium flux through NMDA, ATP, and ACh receptor channels. Biophys. J. 68, 501–506.

    PubMed  CAS  Google Scholar 

  • Schaff, J., Fink, C. C., Slepchenko, B., Carson, J. H., and Loew, L. M. (1997) A general computational framework for modeling cellular structure and function. Biophys. J. 73, 1135–1146.

    PubMed  CAS  Google Scholar 

  • Segal, M., Korkotian, E., and Murphy, D. D. (2000) Dendritic spine formation and pruning: common cellular mechanisms? TINS 23, 53–57.

    PubMed  CAS  Google Scholar 

  • Sinha, S. R., Wu, L. G., and Saggau, P. (1997) Presynaptic calcium dynamics and transmitter release evoked by single action potentials at mammalian central synapses. Biophys. J. 72, 637–651.

    PubMed  CAS  Google Scholar 

  • Stiles, J. R. and Bartol, T. M. (2000) Monte Carlo methods for simulating realistic synaptic microphysiology using Mcell. In: Computational Neuroscience: Realistic Modeling for Experimentalists. DeSchutter, E. (ed.) CRC Press, Boca Raton, FL, pp. 87–127.

    Google Scholar 

  • Tamori, Y. (1993) Theory of dendritic morphology. Phys. Rev. E. 48, 3124–3129.

    Article  Google Scholar 

  • Usui, S. (2003) VisioMe: neuroinformatics research in vision project. Neural Netw. 16, 1293–1300.

    Article  PubMed  Google Scholar 

  • Volfovsky, N., Parnas, H., Segal, M., and Korkotian, E. (1999) Geometry of dendritic spines affects calcium dynamics in hippocampal neurons: theory and experiments. J. Neurophysiol. 81, 450–462.

    Google Scholar 

  • Yuste, R. and Bonhoeffer, T. (2004) Genesis of dendritic spines: insight from ultrastructural and imaging studies. Nat. Rev. Neurosci. 5, 24–34.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Z. and Neher, E. (1993) Mobile and immobile calcium buffers in bovine adrenal chromaffin cells. J. Physiol. 469, 245–273.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhisa Ichikawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ichikawa, K. A modeling environment with three-dimensional morphology, A-Cell-3D, and Ca2+ dynamics in a spine. Neuroinform 3, 49–63 (2005). https://doi.org/10.1385/NI:3:1:049

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NI:3:1:049

Index Entries

Navigation