Skip to main content
Log in

Prions

Protein only or something more? Overview of potential prion cofactors

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Transmissible spongiform encephalopathies (TSEs) in humans and animals are attributed to protein-only infectious agents, called prions. Prions have been proposed to arise from the conformational conversion of the cellular protein PrPC into a misfolded form (e.g., PrPSc for scrapie), which precipitates into aggregates and fibrils. It has been proposed that the conversion process is triggered by the interaction of the infectious form (PrPSc) with the cellular form (PrPC) or might result from a mutation in the gene for PrPC. However, until recently, all efforts to reproduce this process in vitro had failed, suggesting that host factors are necessary for prion replication. In this review we discuss recent findings such as the cellular factors that might be involved in the conformational conversion of prion proteins and the potential mechanisms by which they could operate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adjou K. T., Simoneau S., Sales N., Lamoury F., Dormont D., Papy-Garcia D., et al. (2003) A novel generation of heparan sulfate mimetics for the treatment of prion diseases. J. Gen. Virol. 84, 2595–2603.

    Article  CAS  PubMed  Google Scholar 

  • Adler V., Zeiler B., Kryukov V., Kascsak R., Rubenstein R., and Grossman A. (2003) Small, highly structured RNAs participate in the conversion of human recombinant PrP(Sen) to PrP(Res) in vitro. J. Mol. Biol. 332, 47–57.

    Article  CAS  PubMed  Google Scholar 

  • Aguzzi A. Heppner F. L., Heikenwalder M., Prinz M., Mertz K., Seeger H., and Glatzel M. (2003) Immune system and peripheral nerves in propagation of prions to CNS. Br. Med. Bull. 66, 141–159.

    Article  CAS  PubMed  Google Scholar 

  • Alper T., Cramp W. A., Haig D. A., and Clarke M. C. (1967) Does the agent of scrapie replicate without nucleic acid? Nature 214, 764–766.

    Article  CAS  PubMed  Google Scholar 

  • Arnold J. E., Tipler C., Laszlo L., Hope J., Landon M., and Mayer R. J. (1995) The abnormal isoform of the prion protein accumulates in late-endosome-like organelles in scrapie-infected mouse brain. J. Pathol. 176, 403–411.

    Article  CAS  PubMed  Google Scholar 

  • Baker C. A. and Manuelidis L. (2003) Unique inflammatory RNA profiles of microglia in Creutzfeldt-Jakob disease. Proc. Natl. Acad. Sci. U. S. A. 100, 675–679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker C. A., Lu Z. Y., Zaitsev I., and Manuelidis L. (1999) Microglial activation varies in different models of Creutzfeldt-Jakob disease. J. Virol. 73, 5089–5097.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baskakov I. V., Aagaard C., Mehlhorn I., Wille H., Groth D., Baldwin M. A., et al. (2000) Self-assembly of recombinant prion protein of 106 residues. Biochemistry 39, 2792–2804.

    Article  CAS  PubMed  Google Scholar 

  • Baskakov I. V., Legname G., Prusiner S. B., and Cohen F. E. (2001) Folding of prion protein to its native alphahelical conformation is under kinetic control. J. Biol. Chem. 276, 19,687–19,690.

    Article  CAS  Google Scholar 

  • Basler K., Oesch B., Scott M., Westaway D., Walchli M., Groth D. F., et al. (1986) Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell 46, 417–428.

    Article  CAS  PubMed  Google Scholar 

  • Bessen R. A. and Marsh R. F. (1992) Biochemical and physical properties of the prion protein from two strains of the transmissible mink encephalopathy agent. J. Virol. 66, 2096–2101.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bian L., Yang J. D., Guo T. W., Sun Y., Duan S. W., et al. (2004) Insulin-degrading enzyme and Alzheimer disease: a genetic association study in the Han Chinese. Neurology 63, 241–245.

    Article  CAS  PubMed  Google Scholar 

  • Blatch G. L., Lassle M., Zetter B. R., and Kundra V. (1997) Isolation of a mouse cDNA encoding mSTI1, a stress-inducible protein containing the TPR motif. Gene 194, 277–282.

    Article  CAS  PubMed  Google Scholar 

  • Bogdanov M. and Dowhan W. (1999) Lipid-assisted protein folding. J. Biol. Chem. 274, 36,827–36,830.

    Article  CAS  Google Scholar 

  • Bolton D. C., McKinley M. P., and Prusiner S. B. (1982) Identification of a protein that purifies with the scrapie prion. Science 218, 1309–1311.

    Article  CAS  PubMed  Google Scholar 

  • Booth S., Bowman C., Baumgartner R., Dolenko B., Sorensen G., Robertson C., et al. (2004a) Molecular classification of scrapie strains in mice using gene expression profiling. Biochem. Biophys. Res. Commun. 325, 1339–1345.

    Article  CAS  PubMed  Google Scholar 

  • Booth S., Bowman C., Baumgartner R., Sorensen G., Robertson C., Coulthart M., et al. (2004b) Identification of central nervous system genes involved in the host response to the scrapie agent during preclinical and clinical infection. J. Gen. Virol. 85, 3459–3471.

    Article  CAS  PubMed  Google Scholar 

  • Borchelt D. R., Taraboulos A., and Prusiner S. B. (1992) Evidence for synthesis of scrapie prion proteins in the endocytic pathway. J. Biol. Chem. 267, 16,188–16,199.

    CAS  Google Scholar 

  • Bosque P. J. and Prusiner S. B. (2000) Cultured cell sublines highly susceptible to prion infection. J. Virol. 74, 4377–4386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandner S., Isenmann S., Raeber A., Fischer M., Sailer A., Kobayashi Y., et al. (1996) Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379, 339–343.

    Article  CAS  PubMed  Google Scholar 

  • Bruce M. E. (1993) Scrapie strain variation and mutation. Br. Med. Bull. 49, 822–838.

    Article  CAS  PubMed  Google Scholar 

  • Bruce M. E. (2003) TSE strain variation. Br. Med. Bull. 66, 99–108.

    Article  CAS  PubMed  Google Scholar 

  • Bruce M., Chree A., McConnell I., Foster J., Pearson G., and Fraser H. (1994) Transmission of bovine spongiform encephalopathy and scrapie to mice: strain variation and the species barrier. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 343, 405–411.

    Article  CAS  PubMed  Google Scholar 

  • Bruce M. E., Will R. G., Ironside J. W., McConnell I., Drummond D., Suttie A., et al. (1997) Transmissions to mice indicate that ‘new variant’ CJD, is caused by the BSE agent. Nature 389, 498–501.

    Article  CAS  PubMed  Google Scholar 

  • Bueler H., Aguzzi A., Sailer A., Greiner R. A., Autenried P., Aguet M., and Weissmann C. (1993) Mice devoid of PrP are resistant to scrapie. Cell 73, 1339–1347.

    Article  CAS  PubMed  Google Scholar 

  • Campana V., Sarnataro D., and Zurzolo C. (2005) The highways and byways of prion protein trafficking. Trends Cell. Biol. 15, 102–111.

    Article  CAS  PubMed  Google Scholar 

  • Campana V., Sarnataro D., Fasano C., Casanova P., Paladino S., and Zurzolo C. (2006) Detergent-resistant membrane domains but not the proteasome are involved in the misfolding of a PrP mutant retained in the endoplasmic reticulum. J. Cell Sci. 119, 433–442.

    Article  CAS  PubMed  Google Scholar 

  • Castilla J., Gutierrez-Adan A., Brun A., Pintado B., Parra B., Ramirez M. A., et al. (2004) Different behavior toward bovine spongiform encephalopathy infection of bovine prionprotein transgenic mice with one extra repeat octapeptide insert mutation. J. Neurosci. 24, 2156–2164.

    Article  CAS  PubMed  Google Scholar 

  • Castilla J., Saa P., Hetz C., and Soto C. (2005) In vitro generation of infectious scrapie prions. Cell 121, 195–206.

    Article  CAS  PubMed  Google Scholar 

  • Chesebro B. (1998) BSE and prions: uncertainties about the agent. Science 279, 42,43.

    Article  CAS  PubMed  Google Scholar 

  • Chesebro B. (2003) Introduction to the transmissible spongiform encephalopathies or prion diseases. Br. Med. Bull. 66, 1–20.

    Article  CAS  PubMed  Google Scholar 

  • Chiarini L. B., Freitas A. R., Zanata S. M., Brentani R. R., Martins V. R., and Linden R. (2002) Cellular prion protein transduces neuroprotective signals. EMBO J. 21, 3317–3326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiesa R., Piccardo P., Ghetti B., and Harris D. A. (1998) Neurological illness in transgenic mice expressing a prion protein with an insertional mutation. Neuron 21, 1339–1351.

    Article  CAS  PubMed  Google Scholar 

  • Cohen F. E. and Prusiner S. B. (1998) Pathologic conformations of prion proteins. Annu. Rev. Biochem. 67, 793–819.

    Article  CAS  PubMed  Google Scholar 

  • Collinge J. (2001) Prion disease of humans and animals: their causes and molecular basis. Annu. Rev. Neurosci. 24, 519–550.

    Article  CAS  PubMed  Google Scholar 

  • Collinge J., Sidle K. C., Meads J., Ironside J., and Hill A. F. (1996) Molecular analysis of prion strain variation and the aetiology of ‘new variant’ CJD. Nature 383, 685–690.

    Article  CAS  PubMed  Google Scholar 

  • Come J. H., Fraser P. E., and Lansbury P. T., Jr. (1993) A kinetic model for amyloid formation in the prion diseases: importance of seeding. Proc. Natl. Acad. Sci. U. S. A. 90, 5959–5963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordeiro Y., Machado F., Juliano L., Juliano M. A., Brentani R. R., Foguel D., and Silva J. L. (2001) DNA converts cellular prion protein into the beta-sheet conformation and inhibits prion peptide aggregation. J. Biol. Chem. 276, 49,400–49,409.

    Article  CAS  Google Scholar 

  • Dandoy-Dron F., Guillo F., Benboudjema L., Deslys J. P., Lasmezas C., Dormont D., et al. (1998) Gene expression in scrapie. Cloning of a new scrapie-responsive gene and the identification of increased levels of seven other mRNA transcripts. J. Biol. Chem. 273, 7691–7697.

    Article  CAS  PubMed  Google Scholar 

  • Davis E. C., Broekelmann T. J., Ozawa Y., and Mecham R. P. (1998) Identification of tropoelastin as a ligand for the 65-kD FK506-binding protein, FKBP65, in the secretory pathway. J. Cell Biol. 140, 295–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeArmond S. J., Sanchez H., Yehiely F., Qiu Y., Ninchak-Casey A., Daggett V., et al. (1997) Selective neuronal targeting in prion disease. Neuron 19, 1337–1348.

    Article  CAS  PubMed  Google Scholar 

  • Deleault N. R., Lucassen R. W., and Supattapone S. (2003) RNA molecules stimulate prion protein conversion. Nature 425, 717–720.

    Article  CAS  PubMed  Google Scholar 

  • Doh-Ura K., Iwaki T., and Caughey B. (2000) Lysosomotropic agents and cystenic protease inhibitors inhibit scrapie-associated prion protein accumulation. J. Virol. 74, 4894–4897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doh-Ura K., Perryman S., Race R., and Chesebro B. (1995) Identification of differentially expressed genes in scrapie-infected mouse neuroblastoma cells. Microb. Pathog. 18, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Edenhofer F., Rieger R., Famulok M., Wendler W., Weiss S., and Winnacker E. L. (1996) Prion protein PrPc interacts with molecular chaperones of the Hsp60 family. J. Virol. 70, 4724–4728.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ehehalt R., Keller P., Haass C., Thiele C., and Simons K. (2003) Amyloidogenic processing of the Alzheimer beta amyloid precursor protein depends on lipid rafts. J. Cell Biol. 160, 113–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis V., Daniels M., Misra R., and Brown D. R. (2002) Plasminogen activation is stimulated by prion protein and regulated in a copper-dependent manner. Biochemistry 41, 6891–6896.

    Article  CAS  PubMed  Google Scholar 

  • Ely S., Bonatesta R., Ancsin J. B., Kindy M., and Kisilevsky R. (2001) The in-vitro influence of serum amyloid A isoforms on enzymes that regulate the balance between esterified and un-esterified cholesterol. Amyloid 8, 169–181.

    Article  CAS  PubMed  Google Scholar 

  • Enari M., Flechsig E., and Weissmann C. (2001) Scrapie prion protein accumulation by scrapie-infected neuroblastoma cells abrogated by exposure to a prion protein antibody. Proc. Natl. Acad. Sci. U. S. A. 98, 9295–9299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer M. B., Roeckl C., Parizek P., Schwarz H. P., and Aguzzi A. (2000) Binding of disease-associated prion protein to plasminogen. Nature 408, 479–483.

    Article  CAS  PubMed  Google Scholar 

  • Gabizon R., McKinley M. P., Groth D., and Prusiner S. B. (1988) Immunoaffinity purification and neutralization of scrapie prion infectivity. Proc. Natl. Acad. Sci. U. S. A. 85, 6617–6621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gajdusek D. C. and Gibbs C. J. Jr. (1971) Transmission of two subacute spongiform encephalopathies of man (Kuru and Creutzfeldt-Jakob (disease) to new world monkeys. Nature 230, 588–591.

    Article  CAS  PubMed  Google Scholar 

  • Gajdusek D. C., Gibbs C. J., and Alpers M. (1966) Experimental transmission of a Kuru-like syndrome to chimpanzees. Nature 209, 794–796.

    Article  CAS  PubMed  Google Scholar 

  • Gambetti P., Kong Q., Zou W., Parchi P., and Chen S. G. (2003) Sporadic and familial CJD: classification and characterisation. Br. Med. Bull. 66, 213–239.

    Article  CAS  PubMed  Google Scholar 

  • Gauczynski S., Hundt C., Leucht C., and Weiss S. (2001a) Interaction of prion proteins with cell surface receptors, molecular chaperones, and other molecules. Adv. Protein Chem. 57, 229–272.

    Article  CAS  PubMed  Google Scholar 

  • Gauczynski S., Peyrin J. M., Haik S., Leucht C., Hundt C., Rieger R., et al. (2001b) The 37-kDa/67-kDa laminin receptor acts as the cell-surface receptor for the cellular prion protein. EMBO J. 20, 5863–5875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graner E., Mercadante A. F., Zanata S. M., Forlenza O. V., Cabral A. L., Veiga S. S., et al. (2000a) Cellular prion protein binds laminin and mediates neuritogenesis. Brain Res. Mol. Brain Res. 76, 85–92.

    Article  CAS  PubMed  Google Scholar 

  • Graner E., Mercadante A. F., Zanata S. M., Martins V. R., Jay D. G., and Brentani R. R. (2000b) Laminin-induced PC-12 cell differentiation is inhibited following laser inactivation of cellular prion protein. FEBS Lett. 482, 257–260.

    Article  CAS  PubMed  Google Scholar 

  • Greenwood A. D., Horsch M., Stengel A., Vorberg I., Lutzny G., Maas E., et al. (2005) Cell line dependent RNA expression profiles of prion-infected mouse neuronal cells. J. Mol. Biol. 349, 487–500.

    Article  CAS  PubMed  Google Scholar 

  • Griffith J. S. (1967) Self-replication and scrapie. Nature 215, 1043–1044.

    Article  CAS  PubMed  Google Scholar 

  • Harper J. D. and Lansbury P. T. Jr. (1997) Models of amyloid seeding in Alzheimer's disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu. Rev. Biochem. 66, 385–407.

    Article  CAS  PubMed  Google Scholar 

  • Harris D. A. (2003) Trafficking, turnover and membrane topology of PrP. Br. Med. Bull. 66, 71–85.

    Article  CAS  PubMed  Google Scholar 

  • Heppner F. L., Christ A. D., Klein M. A., Prinz M., Fried M., Kraehenbuhl J. P., and Aguzzi A. (2001) Transepithelial prion transport by M cells. Nat. Med. 7, 976–977.

    Article  CAS  PubMed  Google Scholar 

  • Hill A. F. and Collinge J. (2001) Strain variations and species barriers. Contrib. Microbiol. 7, 48–57.

    Article  CAS  PubMed  Google Scholar 

  • Hill A. F., Desbruslais M., Joiner S., Sidle K. C., Gowland I., Collinge J., et al. (1997) The same prion strain causes vCJD and BSE. Nature 389, 448–450.

    Article  CAS  PubMed  Google Scholar 

  • Hope J. (1994) The nature of the scrapie agent: the evolution of the virino. Ann. N. Y. Acad. Sci. 724, 282–289.

    Article  CAS  PubMed  Google Scholar 

  • Horiuchi M. and Caughey B. (1999) Specific binding of normal prion protein to the scrapie form via a localized domain initiates its conversion to the protease-resistant state. EMBO J. 18, 3193–3203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horiuchi M., Baron G. S., Xiong L. W., and Caughey B. (2001) Inhibition of interactions and interconversions of prion protein isoforms by peptide fragments from the C-terminal folded domain. J. Biol. Chem. 276, 15,489–15,497.

    Article  CAS  Google Scholar 

  • Hornemann S. and Glockshuber R. (1998) A scrapie-like unfolding intermediate of the prion protein domain PrP(121–231) induced by acidic pH. Proc. Natl. Acad. Sci. U. S. A. 95, 6010–6014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hundt C., Peyrin J. M., Haik S., Gauczynski S., Leucht C., Rieger R., et al. (2001) Identification of interaction domains of the prion protein with its 37-kDa/67-kDa laminin receptor. EMBO J. 20, 5876–5886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter N., Goldmann W., Benson G., Foster J. D., and Hope J. (1993) Swaledale sheep affected by natural scrapie differ significantly in PrP genotype frequencies from healthy sheep and those selected for reduced incidence of scrapie. J. Gen. Virol. 74, 1025–1031.

    Article  CAS  PubMed  Google Scholar 

  • Ironside J. W. (2003) The spectrum of safety: variant Creutzfeldt-Jakob disease in the United Kingdom. Semin. Hematol. 40, 16–22.

    Article  PubMed  Google Scholar 

  • Jackson G. S., Hill A. F., Joseph C., Hosszu L., Power A., Waltho J. P., et al. (1999a) Multiple folding pathways for heterologously expressed human prion protein. Biochim. Biophys. Acta 1431, 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Jackson G. S., Hosszu L. L., Power A., Hill A. F., Kenney J., Saibil H., et al. (1999b) Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations. Science 283, 1935–1937.

    Article  CAS  PubMed  Google Scholar 

  • Jansen K., Schafer O., Birkmann E., Post K., Serban H., Prusiner S. B., and Riesner D. (2001) Structural intermediates in the putative pathway from the cellular prion protein to the pathogenic form. Biol. Chem. 382, 683–691.

    Article  CAS  PubMed  Google Scholar 

  • Jarrett J. T. and Lansbury P. T. Jr. (1993) Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73, 1055–1058.

    Article  CAS  PubMed  Google Scholar 

  • Jin T., Gu Y., Zanusso G., Sy M., Kumar A., Cohen M., Gambetti P., and Singh N. (2000) The chaperone protein BiPbinds to a mutant prion protein and mediates its degradation by the proteasome. J. Biol. Chem. 275, 38,699–38,704.

    Article  CAS  Google Scholar 

  • Kazlauskaite J. and Pinheiro T. J. (2005) Aggregation and fibrillization of prions in lipid membranes. Biochem. Soc. Symp. 72, 211–222.

    Article  CAS  Google Scholar 

  • Kazlauskaite J., Sanghera N., Sylvester I., Venien-Bryan C., and Pinheiro T. J. (2003) Structural changes of the prion protein in lipid membranes leading to aggregation and fibrillization. Biochemistry 42, 3295–3304.

    Article  CAS  PubMed  Google Scholar 

  • Kempster S., Collins M. E., Aronow B. J., Simmons M., Green R. B., and Edington N. (2004) Clusterin shortens the incubation and alters the histopathology of bovine spongiform encephalopathy in mice. Neuroreport 15, 1735–1738.

    Article  CAS  PubMed  Google Scholar 

  • Kimberlin R. H., Cole S., and Walker C. A. (1987) Temporary and permanent modifications to a single strain of mouse scrapie on transmission to rats and hamsters. J. Gen. Virol. 68, 1875–1881.

    Article  PubMed  Google Scholar 

  • Kocisko D. A., Come J. H., Priola S. A., Chesebro B., Raymond G. J., Lansbury P. T., and Caughey B. (1994) Cell-free formation of protease-resistant prion protein. Nature 370, 471–474.

    Article  CAS  PubMed  Google Scholar 

  • Kopacek J., Sagaguchi S., Shigematsu K., et al. (2000) Upregulation of the genes encoding lysosomal hydrolases, a peferin-like protein, and peroxidases in the brains of mice affected with an experimental prion disease. J. Virol. 74, 411–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurschner C. and Morgan J. I. (1995) The cellular prion protein (PrP) selectively binds to Bcl-2 in the yeast two-hybrid system. Brain Res. Mol. Brain Res. 30, 165–168.

    Article  CAS  PubMed  Google Scholar 

  • Lasmezas C. I., Comoy E., Hawkins S., Herzog C., Mouthon F., Konold T., et al. (2005) Risk of oral infection with bovine spongiform encephalopathy agent in primates. Lancet 365, 781–783.

    Article  PubMed  Google Scholar 

  • Lasmezas C. I., Deslys J. P., Demaimay R., Adjou K. T., Lamoury F., Dormont D., et al. (1996) BSE transmission to macaques. Nature 381, 743–744.

    Article  CAS  PubMed  Google Scholar 

  • Lassle M., Blatch G. L., Kundra V., Takatori T., and Zetter B. R. (1997) Stress-inducible, murine protein mSTI1. Characterization of binding domains for heat shock proteins and in vitro phosphorylation by different kinases. J. Biol. Chem. 272, 1876–1884.

    Article  CAS  PubMed  Google Scholar 

  • Lee S. and Eisenberg D. (2003) Seeded conversion of recombinant prion protein to a disulfide-bonded oligomer by a reduction-oxidation process. Nat. Struct. Biol. 10, 725–730.

    Article  CAS  PubMed  Google Scholar 

  • Lee K. S., Linden R., Prado M. A., Brentani R. R., and Martins V. R. (2003) Towards cellular receptors for prions. Rev. Med. Virol. 13, 399–408.

    Article  CAS  PubMed  Google Scholar 

  • Legname G., Baskakov I. V., Nguyen H. O., Riesner D., Cohen F. E., DeArmond S. J., and Prusiner S. B. (2004) Synthetic mammalian prions. Science 305, 673–676.

    Article  CAS  PubMed  Google Scholar 

  • Lehmann S. and Harris D. A. (1996) Two mutant prion proteins expressed in cultured cells acquire biochemical properties reminiscent of the scrapie isoform. Proc. Natl. Acad. Sci. U. S. A. 93, 5610–5614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maissen M., Roeckl C., Clatzel M., Goldmann W., and Aguzzi A. (2001) Plasminogen binds to disease-associated prion protein of multiple species. Lancet 357, 2026–2028.

    Article  CAS  PubMed  Google Scholar 

  • May B. C., Govaerts C., Prusiner S. B., and Cohen F. E. (2004) Prons: so many fibers, so little infectivity. Trends Biochem. Sci. 29, 162–165.

    Article  CAS  PubMed  Google Scholar 

  • Mestel R. (1996) Putting prions to the test. Science 273, 184–189.

    Article  CAS  PubMed  Google Scholar 

  • Miller M. W., Williams E. S., Hobbs N. T., and Wolfe L. L. (2004) Environmental source of prion transmission in mule deer. Emerg. Infect. Dis. 10, 1003–1006.

    Article  PubMed  PubMed Central  Google Scholar 

  • Montrasio F., Cozzio A., Flechsig E., Rossi D., Klein M. A., Rulicke T., et al. (2001) Blymphocyte-restricted expression of prion protein does not enable prion replication in prion protein knockout mice. Proc. Natl. Acad. Sci. U. S. A. 98, 4034–4037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morillas M., Swietnicki W., Gambetti P., and Surewicz W. K. (1999) Membrane environment alters the conformational structure of the recombinant human prion protein. J. Biol. Chem. 274, 36,859–36,865.

    Article  CAS  Google Scholar 

  • Morillas M., Vanik D. L., and Surewicz W. K. (2001) On the mechanism of alpha-helix to beta-sheet transition in the recombinant prion protein. Biochemistry 40, 6982–6987.

    Article  CAS  PubMed  Google Scholar 

  • Myerowitz R., Lawson D., Mizukami H., Mi Y., Tifft C. J., and Proia R. L. (2002) Molecular pathophysiology in Tay-Sachs and Sandh off diseases as revealed by gene expression profiling. Hum. Mol. Genet. 11, 1343–1350.

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi H. (2003) Neuronal and microglial cathepsins in aging andage-related diseases. Ageing Res. Rev. 2, 367–381.

    Article  CAS  PubMed  Google Scholar 

  • Nandi P. K., Leclerc E., Nicole J. C., and Takahashi M. (2002) DNA-induced partial unfolding of prion protein leads to its polymerisation to amyloid. J. Mol. Biol. 322, 153–161.

    Article  CAS  PubMed  Google Scholar 

  • Nishida N., Harris D. A., Vilette D., Laude H., Frobert Y., Grassi J., et al. (2000) Successful transmission of three mouse-adapted scrapie strains to murine neuroblas-tome cell lines overexpressing wild-type mouse prion protein. J. Virol. 74, 320–325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oesch B., Teplow D. B., Stahl N., Serban D., Hood L. E., and Prusiner S. B. (1990) Identification of cellular proteins binding to the scrapie prion protein. Biochemistry 29, 5848–5855.

    Article  CAS  PubMed  Google Scholar 

  • Orgel L. E. (1996) Prion replication and secondary nucleation. Chem. Biol. 3, 413–414.

    Article  CAS  PubMed  Google Scholar 

  • Pan K. M., Baldwin M., Nguyen J., Gasset M., Serban A., Groth D., et al. (1993) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc. Natl. Acad. Sci. U. S. A. 90, 10,962–10,966.

    Article  CAS  Google Scholar 

  • Pan T., Wong B. S., Liu T., Li R., Petersen R. B., and Sy M. S. (2002) Cell-surface prion protein interacts with glycosaminoglycans. Biochem. J. 368, 81–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peretz D., Williamson R. A., Kaneko K., Vergara J., Leclerc E., Schmitt-Ulms G., et al. (2001) Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature 412, 739–743.

    Article  CAS  PubMed  Google Scholar 

  • Perrier V., Kaneko K., Safar J., Vergara J., Tremblay P., DeArmond S. J., et al. (2002) Dominant-negative inhibition of prion replication in transgenic mice. Proc. Natl. Acad. Sci. U. S. A. 99, 13,079–13,084.

    Article  CAS  Google Scholar 

  • Petit-Turcotte C., Stohl S. M., Beffert U., Cohn J. S., Aumont N., Tremblay M., et al. (2001) Apolipoprotein C-Iexpression in the brain in Alzheimer's disease. Neurobiol. Dis. 8, 953–963.

    Article  CAS  PubMed  Google Scholar 

  • Post K., Pitschke M., Schafer O., Wille H., Appel T. R., Kirsch D., et al. (1998) Rapid, acquisition of beta-sheet structure in the prion protein prior to multimer formation. Biol. Chem. 379, 1307–1317

    Article  CAS  PubMed  Google Scholar 

  • Priola S. A. and Caughey B. (1994) Inhibition of scrapie-associated PrP accumulation. Probing the role of glyco-saminoglycans in amyloidogenesis. Mol. Neurobiol. 8, 113–120.

    Article  CAS  PubMed  Google Scholar 

  • Priola S. A. and Chesebro B. (1995) A single hamster PrP amino acid blocks conversion to protease-resistant PrP in scrapie-infected mouse neuroblastoma cells. J. Virol. 69, 7754–7758.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prusiner S. B. (1991) Molecular biology of prion diseases. Science 252, 1515–1522

    Article  CAS  PubMed  Google Scholar 

  • Prusiner S. B. (1982) Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144.

    Article  CAS  PubMed  Google Scholar 

  • Prusiner S. B. (1998) Prions. Proc. Natl. Acad. Sci. U. S. A. 95, 13,363–13,383.

    Article  CAS  Google Scholar 

  • Prusiner S. B., Scott M., Foster D., Pan K. M., Groth D., Mirenda C., et al. (1990) Transgenetic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. Cell 63, 673–686.

    Article  CAS  PubMed  Google Scholar 

  • Race R. E., Fadness L. H., and Chesebro B. (1987) Characterization of scrapie infection in mouse neuroblastoma cells. J. Gen. Virol. 68, 1391–1399.

    Article  PubMed  Google Scholar 

  • Rieger R., Edenhofer F., Lasmezas C. I., and Weiss S. (1997) The human 37-kDa laminin receptor precursor interacts with the prion protein in eukaryotic cells. Nat. Med. 3, 1383–1388.

    Article  CAS  PubMed  Google Scholar 

  • Riemer C., Neidholds S., Burwinkel M., Schwarz A., Schultz J., Kratzschmar J., et al. (2004) Gene expression profiling of scrapie-infected brain tissue. Biochem. Biophys. Res. Commun. 323, 556–564.

    Article  CAS  PubMed  Google Scholar 

  • Riesner D. (2003) Biochemistry and structure of PrP(C) and PrP(Sc). Br. Med. Bull. 66, 21–33.

    Article  CAS  PubMed  Google Scholar 

  • Riesner D., Kellings K., Post K., Wille H., Serban H., Groth D., et al. (1996) Disruption of prion rods gene-rates 10-nm spherical particles having high alphahelical content and lacking scrapie infectivity. J. Virol. 10, 1714–1722.

    Google Scholar 

  • Rubenstein R., Carp R. I., and Callahan S. M. (1984) In vitro replication of scrapie agent in a neuronal model: infection of PC12 cells. J. Gen. Virol. 65, 2191–2198.

    Article  PubMed  Google Scholar 

  • Saborio G. P., Permanne B., and Soto C. (2001) Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411, 810–813.

    Article  CAS  PubMed  Google Scholar 

  • Safar J. G., and Kellings K., Serban A., Groth D., Cleaver J. E., Prusiner S. B., and Riesner D. (2005) Search for a prion-specific nucleic acid. J. Virol. 79, 10,796–10,806.

    Article  CAS  Google Scholar 

  • Sanders C. R. and Nagy J. K. (2000) Misfolding of membrane proteins in health and disease: the lady or the tiger? Curr. Opin. Struct. Biol. 10, 438–442.

    Article  CAS  PubMed  Google Scholar 

  • Sanghera N. and Pinheiro T. J. (2002) Binding of prion protein to lipid membranes and implications for prion conversion. J. Mol. Biol. 315, 1241–1256.

    Article  CAS  PubMed  Google Scholar 

  • Sarnataro D., Campana V., Paladino S., Stornaiuolo M., Nitsch L., and Zurzolo C. (2004) PrPC Association with lipid rafts in the early secretory pathway stabilizes its cellular conformation. Mol. Biol. Cell 15, 4031–4042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schatzl H. M., Laszlo L., Holtzman D. M., Tatzelt J., De-Armond S. J., Weiner R. I., et al. (1997) Anypothalamic neuronal cell line persistently infected with scrapie prions exhibits apoptosis. J. Virol. 71, 8821–8831.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt-Ulms G., Legname G., Baldwin M. A., Ball H. L., Bradon N., Bosque P. J., et al. (2001) Binding of neural cell adhesion molecules (N-CAMs) to the cellular prion protein. J. Mol. Biol. 314, 1209–1225.

    Article  CAS  PubMed  Google Scholar 

  • Schonberger O., Horonchik L., Gabizon R., Papy-Garcia D., Barritault D., and Taraboulos A. (2003) Novel heparan mimetics potently inhibit the scrapie prion protein and its endocytosis. Biochem. Biophys. Res. Commun. 312, 473–479.

    Article  CAS  PubMed  Google Scholar 

  • Shibuya S., Higuchi J., Shin R. W., Tateishi J., and Kitamoto T. (1998) Protective prion protein polymorphisms a gainst sporadic Creutzfeldt-Jakob disease. Lancet 351, 419.

    Article  CAS  PubMed  Google Scholar 

  • Shyng S. L., Heuser J. E., and Harris D. A. (1994) Aglyco-lipid-anchored prion protein is endocytosed via clathrin-coated pits. J. Cell Biol. 125, 1239–1250.

    Article  CAS  PubMed  Google Scholar 

  • Simons M., Keller P., De Strooper B., Beyreuther K., Dotti C. G., and Simons K. (1998) Cholesterol depletion inhibits the generation of beta-amyloid in hippo-campal neurons. Proc. Natl. Acad. Sci. U. S. A. 95, 6460–6464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soto C., Saborio G. P., and Anderes L. (2002) Cyclic ampli-fication of protein misfolding: application toprion-related disorders and beyond. Trends Neurosci. 25, 390–394.

    Article  CAS  PubMed  Google Scholar 

  • Staniforth R. A., Giannini S., Higgins L. D., Conroy M. J., Hounslow A. M., Jerala R., et al. (2001) Three-dimensional domain swapping in the folded and molten-globule states of cystatins, an amyloid-forming structural superfamily. EMBO J. 20, 4774–4781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stockel J. and Hartl F. U. (2001) Chaperonin-mediated de novo generation of prion protein aggregates. J. Mol. Biol. 313, 861–872.

    Article  CAS  PubMed  Google Scholar 

  • Stuermer C. A., Langhorst M. F., Wiechers M. F., Legler D. F., Von Hanwehr S. H., Guse A. H., and Plattner H. (2004) PrPc capping in T cells promotes its association with the lipid raft proteins reggie-1 and reggie-2 and leads to signal transduction. FASEB J. 18, 1731–1733.

    CAS  PubMed  Google Scholar 

  • Supattapone S. (2004) Prion protein conversion in vitro. J. Mol. Med. 82, 348–356.

    Article  CAS  PubMed  Google Scholar 

  • Supattapone S., Nguyen H. O., Cohen F. E., Prusiner S. B., and Scott M. R. (1999) Elimination of prions by branched polyamines and implications for therapeutics. Proc. Natl. Acad. Sci. U. S. A. 96, 14,529–14,534.

    Article  CAS  Google Scholar 

  • Taraboulos A., Raeber A. J., Borchelt D. R., Serban D., and Prusiner S. B. (1992) Synthesis and trafficking of prion proteins in cultured cells. Mol. Biol. Cell 3, 851–863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taraboulos A., Scott M., Semenov A., Avrahami D., Laszlo L., Prusiner S. B., and Avraham D. (1995) Cholesterol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform. J. Cell Biol. 129, 121–132.

    Article  CAS  PubMed  Google Scholar 

  • Telling G. C., Parchi P., DeArmond S. J., Cortelli P., Montagna P., Gabizon R., et al. (1996) Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity. Science 274, 2079–2082.

    Article  CAS  PubMed  Google Scholar 

  • Telling G. C., Scott M., Hsiao K. K., Foster D., Yang S. L., Torchia M., et al. (1994) Transmission of Creutzfeldt-Jakob disease from humans to transgenic mice expressing chimeric human-mouse prion protein. Proc. Natl. Acad. Sci. U. S. A. 91, 9936–9940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Telling G. C., Scott M., Mastrianni J., Gabizon R., Torchia M., Cohen F. E., et al. (1995) Prion propagation in mice expressing human and chimeric PrP transgenes implicates the interaction of cellular PrP with another protein. Cell 83, 79–90.

    Article  CAS  PubMed  Google Scholar 

  • Vilette D., Andreoletti O., Archer F., Madelaine M. F., Vilotte J. L., Lehmann S., and Laude H. (2001) Ex vivo propagation of infectious sheep scrapie agent in heterologous epithelial cells expressing ovine prion protein. Proc. Natl. Acad. Sci. U. S. A. 98, 4055–4059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vorberg I., Raines A., Story B., and Priola S. A. (2004) Susceptibility of common fibroblast cell lines to trans-missible spongiform encephalopathy agents. J. Infect. Dis. 189, 431–439.

    Article  CAS  PubMed  Google Scholar 

  • Weissmann C. (1991) A ‘unified theory’ of prion propagation. Nature 352, 679–683.

    Article  CAS  PubMed  Google Scholar 

  • Weissmann C. (2004) The state of the prion. Nat. Rev. Microbiol. 2, 861–871.

    Article  CAS  PubMed  Google Scholar 

  • Weissmann C. and Flechsig E. (2003) PrP knock-out and PrP transgenic mice in prion research. Br. Med. Bull. 66, 43–60.

    Article  CAS  PubMed  Google Scholar 

  • Welker E., Raymond L. D., Scheraga H. A., and Caughey B. (2002) Intramolecular versus intermolecular disul-fide bonds in prion proteins. J. Biol. Chem. 277, 33,477–33,481.

    Article  CAS  Google Scholar 

  • Westaway D., DeArmond S. J., Cayetano-Canlas J., Groth D., Foster D., Yang S. L., et al. (1994) Degeneration of skeletal muscle, peripheral nerves, and the central nervous system in transgenic mice overexpressing wild-type prion proteins. Cell 76, 117–129.

    Article  CAS  PubMed  Google Scholar 

  • Will R. G., Ironside J. W., Zeidler M., Cousens S. N., Estibeiro K., Alperovitch A., et al. (1996) A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 347, 921–925.

    Article  CAS  PubMed  Google Scholar 

  • Wollmer M. A., Streffer J. R., Lutjohann D., Tsolaki M., Iakovidou V., Hegi T., et al. (2003) ABCA1 modulates CSF cholesterol levels and influences the age at onset of Alzheimer's disease. Neurobiol. Aging 24, 421–426.

    Article  CAS  PubMed  Google Scholar 

  • Wong C., Xiong L. W., Horiuchi M., Raymond L., Wehrly K., Chesebro B., and Caughey B. (2001) Sullated glycans and elevated temperature stimulate PrP(Sc)-dependent cell-free formation of protease-resistant prion protein. EMBO J. 20, 377–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang W., Windl O., Wunsch G., Dugas M., Kohlmann A., Dierkes N., et al. (2004) Identification of differentially expressed genes in scrapie-infected mouse brains by using global gene expression technology. J. Virol. 78, 11,051–11,060.

    Article  CAS  Google Scholar 

  • Yehiely F., Bamborough P., Da Costa M., Perry B. J., Thinakaran G., Cohen F. E., et al. (1997) Identification of candidate proteins binding to prion protein. Neurobiol. Dis. 3, 339–355.

    Article  CAS  PubMed  Google Scholar 

  • Zanata S. M., Lopes M. H., Mercadante A. F., Hajj G. N., Chiarini L. B., Nomizo R., et al. (2002) Stress-inducible protein 1 is a cell surface ligand for cellular prion that triggers neuroprotection. EMBO J. 21, 3307–3316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H., Kaneko K., Nguyen J. T., Livshits T. L., Baldwin M. A., Cohen F. E., et al. (1995) Conformational transitions in peptides containing two putative alpha-helices of the prion protein. J. Mol. Biol. 250, 514–526.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y., Spiess E., Groschup M. H., and Burkle A. (2003) Up-regulation of cathepsin B and cathepsin L activities in scrapie-infected mouse Neuro2a cells. J. Gen. Virol. 84, 2279–2283.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Zurzolo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fasano, C., Campana, V. & Zurzolo, C. Prions. J Mol Neurosci 29, 195–214 (2006). https://doi.org/10.1385/JMN:29:3:195

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:29:3:195

Index Entries

Navigation