Skip to main content
Log in

Metabolic activity

A novel indicator of neuronal survival in the murine dopaminergic cell line CAD

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Apoptosis is implicated in many neurodegenerative diseases, including Parkinson’s disease (PD). Neuroprotective strategies targeting apoptosis need to preserve functional integrity of the saved cells to be effective. The aim of the present study was to evaluate a novel approach for analyzing neuronal function that monitors cellular metabolic responses to receptor activation using the microphysiometer. N-Acetyl-sphingosine (C2-ceramide) induced cell death of the neuronal cell line, Cath.a-differentiated (CAD) cells, which resemble catecholaminergic cells of the CNS, and provide a useful in vitro model for the cells affected in PD. C2-ceramide also suppressed the metabolic response of CAD cells to muscarinic receptor activation. Pretreatment with the caspase inhibitor Boc-Asp-(OMe)-fluoromethylketone (BAF) plus neurotrophin-3 (NT-3) reduced C2-ceramide-induced CAD cell death, delaying cell death more effectively than either agent alone; and, most significantly, BAF and NT-3 enabled the cells remaining 24 h after toxin treatment to generate a normal metabolic response to the muscarinic agonist carbachol. On the basis of these results, we suggest that measuring metabolic responses to receptor activation is a useful method for following neuronal viability after toxin treatment and that the combination of caspase inhibitors and neurotrophic factors might be a plausible strategy for improving neuronal survival, with critical preservation of metabolic function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bradbury E. J., King V. R., Simmons L. J., Priestley J. V., and McMahon S. B. (1998) NT-3, but not BDNF, prevents atrophy and death of axotomized spinal cord projection neurons. Eur. J. Neurosci. 10, 3058–3068.

    Article  PubMed  CAS  Google Scholar 

  • Casaccia-Bonnefil P., Gu C., and Chao M. V. (1999) Neurotrophins in cell survival/death decisions. Adv. Exp. Med. Biol. 468, 275–282.

    PubMed  CAS  Google Scholar 

  • Chang L. K., Putcha G. V., Deshmukh M., and Johnson E. M. Jr. (2002) Mitochondrial involvement in the point of no return in neuronal apoptosis. Biochimie 84, 223–231.

    Article  PubMed  CAS  Google Scholar 

  • Dawson T. M. and Dawson V. L. (2002) Neuroprotective and neurorestorative strategies for Parkinson’s disease. Nat. Neurosci. 5(Suppl.), 1058–1061.

    Article  PubMed  CAS  Google Scholar 

  • Deshmukh M., Kuida K., and Johnson E. M. Jr. (2000) Caspase inhibition extends the commitment to neuronal death beyond cytochrome c release to the point of mitochondrial depolarization. J. Cell Biol. 150, 131–143.

    Article  PubMed  CAS  Google Scholar 

  • Dudek H., Datta S. R., Franke T. F., Birnbaum M. J., Yao R., Cooper G. M., et al. (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275, 661–665.

    Article  PubMed  CAS  Google Scholar 

  • Eberhardt O., Coelln R. V., Kugler S., Lindenau J., Rathke-Hartlieb S., Gerhardt E., et al. (2000) Protection by synergistic effects of adenovirus-mediated X-chromosome-linked inhibitor of apoptosis and glial cell line-derived neurotrophic factor gene transfer in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. J. Neurosci. 20, 9126–9134.

    PubMed  CAS  Google Scholar 

  • Garcia-Ruiz C., Colell A., Mari M., Morales A., and Fernandez-Checa J. C. (1997) Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J. Biol. Chem. 272, 11369–11377.

    Article  PubMed  CAS  Google Scholar 

  • Gibson R. M. (1999) Caspase activation is downstream of commitment to apoptosis of Ntera-2 neuronal cells. Exp. Cell Res. 251, 203–212.

    Article  PubMed  CAS  Google Scholar 

  • Gozuacik D. and Kimchi A. (2004) Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23, 2891–2906.

    Article  PubMed  CAS  Google Scholar 

  • Hafner F. (2000) Cytosensor Microphysiometer: technology and recent applications. Biosens. Bioelectron. 15, 149–158.

    Article  PubMed  CAS  Google Scholar 

  • Honig L. S. and Rosenberg R. N. (2000) Apoptosis and neurologic disease. Am. J. Med. 108, 317–330.

    Article  PubMed  CAS  Google Scholar 

  • Horton C. D., Qi Y., Chikaraishi D., and Wang J. K. (2001) Neurotrophin-3 mediates the autocrine survival of the catecholaminergic CAD CNS neuronal cell line. J. Neurochem. 76, 201–209.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy S. G., Wagner A. J., Conzen S. D., Jordan J., Bellacosa A., Tsichlis P. N., and Hay N. (1997) The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev. 11, 701–713.

    Article  PubMed  CAS  Google Scholar 

  • Martin S. J., O’Brien G. A., Nishioka W. K., McGahon A. J., Mahboubi A., Saido T. C., and Green D. R. 1995. Proteolysis of fodrin (non-erythroid spectrin) during apoptosis. J. Biol. Chem. 270, 6425–6428.

    Article  PubMed  CAS  Google Scholar 

  • Marzo I., Susin S. A., Petit P. X., Ravagnan L., Brenner C., Larochette N., et al. (1998) Caspases disrupt mitochondrial membrane barrier function. FEBS Lett. 427, 198–202.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P. (2000) Apoptosis in neurodegenerative disorders. Nat. Rev. Mol. Cell Biol. 1, 120–129.

    Article  PubMed  CAS  Google Scholar 

  • McCarthy N. J., Whyte M. K., Gilbert C. S., and Evan G. I. (1997) Inhibition of Ced-3/ICE-related proteases does not prevent cell death induced by oncogenes, DNA damage, or the Bcl-2 homologue Bak. J. Cell Biol. 136, 215–227.

    Article  PubMed  CAS  Google Scholar 

  • Miller F. D. and Kaplan D. R. (2001) Neurotrophin signalling pathways regulating neuronal apoptosis. Cell Mol. Life Sci. 58, 1045–1053.

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki T., Asai A., Saito N., Tanaka S., Katagiri H., Asano T., et al. (2002) Akt protein kinase inhibits nonapoptotic programmed cell death induced by ceramide. J. Biol. Chem. 277, 2790–2797.

    Article  PubMed  CAS  Google Scholar 

  • Moore J. D., Rothwell N. J., and Gibson R. M. (2002) Involvement of caspases and calpains in cerebrocortical neuronal cell death is stimulus-dependent. Br. J. Pharmacol. 135, 1067–1077.

    Article  Google Scholar 

  • Nicholson D. W. (2000) From bench to clinic with apoptosis-based therapeutic agents. Nature 407, 810–816.

    Article  PubMed  CAS  Google Scholar 

  • Pasuit J. B., Li Z., and Kuzhikandathil E. V. (2004) Multi-modal regulation of endogenous D dopamine receptor expression and function in the CAD catecholaminergic cell line. J. Neurochem. 89, 1508–1519.

    Article  PubMed  CAS  Google Scholar 

  • Pettus B. J., Chalfant C. E., and Hannun Y. A. (2002) Ceramide in apoptosis: an overview and current perspectives. Biochim. Biophys. Acta 1585, 114–125.

    PubMed  CAS  Google Scholar 

  • Qi Y., Wang J. K., McMillian M., and Chikaraishi D. M. (1997) Characterization of a CNS cell line, CAD, in which morphological differentiation is initiated by serum deprivation. J. Neurosci. 17, 1217–1225.

    PubMed  CAS  Google Scholar 

  • Roy S. (2000) Caspases at the heart of the apoptotic cell death pathway. Chem. Res. Toxicol. 13, 961–962.

    Article  PubMed  CAS  Google Scholar 

  • Santhanagopal A., Chidiac P., Horne W. C., Baron R., and Dixon S. J. (2001) Calcitonin (CT) rapidly increases NA(+)/H(+) exchange and metabolic acid production: effects mediated selectively by the C1A CT receptor isoform. Endocrinology 142, 4401–4413.

    Article  PubMed  CAS  Google Scholar 

  • Thornberry N. A. (1998) Caspases: key mediators of apoptosis. Chem. Biol. 5, R97–103.

    Article  PubMed  CAS  Google Scholar 

  • Toman R. E., Spiegel S., and Faden A. I. (2000) Role of ceramide in neuronal cell death and differentiation. J. Neurotrauma 17, 891–898.

    Article  PubMed  CAS  Google Scholar 

  • Vander Heiden M. G., Plas D. R., Rathmell J. C., Fox C. J., Harris M. H., and Thompson C. B. (2001) Growth factors can influence cell growth and survival through effects on glucose metabolism. Mol. Cell. Biol. 21, 5899–5912.

    Article  Google Scholar 

  • von Coelln R., Kugler S., Bahr M., Weller M., Dichgans J., and Schulz J. B. (2001) Rescue from death but not from functional impairment: caspase inhibition protects dopaminergic cells aginst 6-hydroxydopamine-induced apoptosis but not aginast the loss of their terminals. J. Neurochem. 77, 263–273.

    Article  Google Scholar 

  • Waldmeier P. C. and Tatton W. G. (2004) Interrupting apoptosis in neurodegenerative disease: potential for effective therapy? Drug Discov. Today 9, 210–218.

    Article  PubMed  CAS  Google Scholar 

  • Wang H. and Oxford G. S. (2000) Voltage-dependent ion channels in CAD cells: a catecholaminergic neuronal line that exhibits inducible differentiation. J. Neurophysiol. 84, 2888–2895.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosemary M. Gibson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arboleda, G., Waters, C. & Gibson, R.M. Metabolic activity. J Mol Neurosci 27, 65–77 (2005). https://doi.org/10.1385/JMN:27:1:065

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:27:1:065

Index Entries

Navigation