Skip to main content
Log in

Knowledge concerning splat formation: An invited review

  • Invited Review
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

This paper summarizes our knowledge at the beginning of 2003 about splat formation. First, the analytical and numerical models related to the impact and flattening of single particles on smooth or rough substrates with different tilting are recalled. Then, the different diagnostic methods, including imaging, are briefly described. The last part of the paper is devoted to the results and their discussion. Studies are related to the effect of various parameters on particle flattening. They include the characteristics of particles prior to impact: normal impact velocity, temperature, molten state, oxidation state, etc.; the parameters related to the substrate: tilting angle, roughness, oxide layer composition, thickness and crystallinity, desorption of adsorbates and condensates, wetting properties between impacting particle and substrate, etc.; and, finally, the parameters related to the heat exchange between the flattening particle and the substrate. They depend on previous parameters and control the propagation of the solidification front within the flattening particle, eventually modifying its liquid flow. It is obvious from this review that, if our understanding of the involved phenomena has been drastically improved during the last years, many points have still to be clarified. This is of primary importance because all the coating properties are linked to the particle flattening, splat formation, and layering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Fauchais, A. Vardelle, and B. Dussoubs: “Quo Vadis Thermal Spray,” J. Therm. Spray Technol., 2001, 10(1), pp. 44–66.

    Article  CAS  Google Scholar 

  2. M.L. Thorpe: “Thermal Spray: Industry in Transition,” Adv. Mater. Proc., 1993, 3, pp. 50–61.

    Google Scholar 

  3. F. Kassabji, G. Jacq, and J.P. Durand: “Thermal Spray Applications for the Next Millenium: A Business Development Perspective,” in Thermal Spray: Meeting the Challenges of the 21st Century, C. Coddet, ed., ASM International, Materials Park, OH, 1998, pp. 1677–80.

    Google Scholar 

  4. M. Ducos and J.P. Durand: “Thermal Coatings in Europe, Business Prospection,” in Thermal Spray 2001, New Surfaces for a New Millenium, C.C. Berndt, K.A. Khor, and E.F. Lugscheider, ed., ASM International Materials Park, OH, 2001, pp. 1267–71.

    Google Scholar 

  5. A. Vardelle, C. Moreau, and P. Fauchais: “Deposit Formation Dynamics,” MRS Bull., 2000, July, pp. 32–37.

  6. T.W. Clyne: “Numerical Treatment of Rapid Solidification,” Metall. Trans., 1994, B15, pp. 369–80.

    Google Scholar 

  7. T.W. Clyne and G.C. Gill: “Residual Stresses in Thermal Spray Coatings and Their Effect on Interfacial Adhesion: A Review of Recent Work,” J. Therm. Spray Technol., 1996, 5, pp. 401–16.

    CAS  Google Scholar 

  8. R.A. Neiser, M.F. Smith, and R.C. Dykhuizen: “Oxidation in Wire HVOF Sprayed Steel,” J Therm Spray Technol, 1998, 7(4), pp. 537–45.

    Article  CAS  Google Scholar 

  9. G. Espié, B. Hammoyer, P. Fauchais, J.C. Labbe, and A. Vardelle: “Oxidation of Iron Particles During APS: Effect of the Process on Formed Oxide. Wetting of Droplets on Ceramic Substrates,” in “Thermal Spray, New Surfaces for a New Millennium,” C.C. Bernett, K.A. Khor, and E. Lugscheider, ed., ASM International, Materials Park, OH, 2001, pp. 881–88.

    Google Scholar 

  10. H. Voggenreiter, H. Huber, S. Beyer, and H.J. Spies: “Influence of Particle Velocity and Molten Phase on the Chemical and Mechanical Properties of HVOF Sprayed Structural Coatings on Alloy 316L,” in Thermal Spray, Science and Technology, C.C. Berndt and S. Sampath, ed., ASM International, Materials Park, OH, 1995, pp. 303–08.

    Google Scholar 

  11. A. Denoirjean, O. Lagnoux, P. Fauchais, and V. Sember: “Oxidation Control in Atmospheric Plasma Spraying: Comparison Between Ar/H2/He and Ar/H2 Mixtures,” in Thermal Spray: Meeting the Challenges of the 21st Century, C. Coddet, ed., ASM International, Materials Park, OH, 1998, pp. 809–14.

    Google Scholar 

  12. R.C. Dykhuizen: “Review of Impact and Solidification of Molten Thermal Spray Droplets,” J. Therm. Spray Technol., 1994, 3(4), pp. 351–61.

    CAS  Google Scholar 

  13. P. Fauchais, A.C. Leger, M. Vardelle, and A. Vardelle: “Formation of Plasma-Sprayed Oxide Coatings,” in Proc. of the Julian Szekely Memorial Symp. on Materials Processing, H.Y. Sohn, J.W. Evans, and D. Apelian, ed., TMS, Warrendale, PA, 1997, pp. 571–92.

    Google Scholar 

  14. V.V. Sobolev and J.M. Guilemany: “Flattening of Droplets and Formation of Splats in Thermal Spraying: A Review Of Recent Work—Part 1,” J. Therm. Spray Technol., 1999, 8(1), pp. 87–101; “Flattening of Droplets and Formation of Splats in Thermal Spraying: A Review Of Recent Work—Part 1,” J. Therm Spray Technol., 1999, 8(2), pp. 301–14.

    Article  CAS  Google Scholar 

  15. S.Q. Armster, J.-P. Delplanque, M. Rein, and E.J. Lavernia: “Thermo-Fluid Mechanisms Controlling Droplet Based Materials Processes,” Int. Mater. Rev., 2002, 7(6), pp. 265–301.

    Google Scholar 

  16. C. Mundo, M. Sommerfeld, and C. Tropea: “Droplet-Wall Collisions: Experimental Studies of the Deformation and Break-Up Process,” Int. J. Multiphase Flow, 1995, 21, pp. 151–73.

    Article  CAS  Google Scholar 

  17. C.D. Stow and M.G. Hadfield: “An Experimental Investigation of Fluid Flow Resulting From the Impact of a Water Drop With an Underlying Dry Surface,” Proc. R. Soc. London, 1981, A373, pp. 419–41.

    ADS  Google Scholar 

  18. C. Escure, M. Vardelle, and P. Fauchais: “Experimental and Theoretical Study of the Impact of Alumina Droplet on Cold and Hot Substrates,” Plasma Chem. Plasma Process, 2003, 3, pp. 291–309.

    Google Scholar 

  19. R.F. Allen: “The Role of Surface Tension in Splashing,” J. Coll. Interface, 1975, 51, pp. 350–51.

    Article  Google Scholar 

  20. A. Vardelle, M. Vardelle, P. Fauchais, and D. Gobin: “Monitoring Particle Impact on a Substrate During Plasma Spray Process,” NATO Series E: Applied Science, 1995, 282, pp. 95–121.

    CAS  Google Scholar 

  21. S.P. Wang, G.X. Wang, and E.F. Matthys: “Melting and Resolidification of a Substrate in Contact With a Molten Metal: Operational Maps,” Int. J. Heat Mass Transfer, 1998, 41, pp. 1177–88.

    Article  MATH  CAS  Google Scholar 

  22. D.W. Sun, J. Xu, H. Zang, Y.P. Wan, V. Prasad, and G.X. Wang: “Effect of Contact Resistance and Substrate Melting on Thermal Spray Coating,” in Thermal Spray: Surface Engineering Via Applied Research, C.C. Berndt, ed., ASM International, Materials Park, OH, 2000, pp. 195–201.

    Google Scholar 

  23. P. Fauchais, M. Vardelle, A. Vardelle, L. Bianchi, and A.C. Leger: “Parameters Controlling the Generation and Properties of Plasma Sprayed Zirconia Coatings,” Plasma Chem. Plasma Process., 1996, 16(1), pp. 99S-125S.

    Article  CAS  Google Scholar 

  24. C. Robert, A. Denoirjean, A. Vardelle, G.X. Wang, and S. Sampath: “Nucleation and Phase Selection in Plasma-Sprayed Alumina: Modeling and Experiment,” in Thermal Spray: Meeting the Challenges of the 21st Century, C. Coddet, ed., ASM International, Materials Park OH, 1998, pp. 767–72.

    Google Scholar 

  25. A. Vardelle, C. Robert, G.X. Wang, and S. Sampath: “Analysis of Nucleation, Phase Selection and Rapid Solidification of an Alumina Splat,” in Thermal Spray: a United Forum for Scientific and Technological Advances, C.C. Berndt, ed., ASM International, Materials Park, OH, 1997, pp. 635–43.

    Google Scholar 

  26. S. Pasandideh-Fard, V. Pershin, S. Chandra, and J. Mostaghimi: “Splat Shape in Thermal Spray Coating Process: Simulations and Experiments,” J. Therm. Spray Technol., 2002, 11(2), pp. 206–17.

    Article  Google Scholar 

  27. V.V. Sobolev, J.M. Guilemany, and A.J. Martin: “Influence of Surface Roughness on the Flattening of Powder Particles During Thermal Spraying,” J. Therm. Spray Technol., 1996, 5(2), pp. 207–14.

    CAS  Google Scholar 

  28. H. Fukanuma: “Mathematical Modeling of Flattening Process on Rough Surfaces in Thermal Spray,” in Thermal Spray: Practical Solutions for Engineering Problems, C.C. Berndt, ed., ASM International, Materials Park, OH, 1996, pp. 647–56.

    Google Scholar 

  29. H. Fukanuma, R. Xie, N. Ohno, J.Y. Fujiwara, and S. Kuroda: “Characterization of Roughened Substrate Surface on Bond Strength of Thermal Spray Deposits,” in Int. Thermal Spray Conference Proc., E. Lugscheider, ed., DVS, Düsseldorf, Germany, 2002, pp. 312–17.

    Google Scholar 

  30. S. Guessasma, G. Montavon, C. Coddet, C. Mancini, and C.C. Berndt: “Fractal Dimension as an Indicator of Thermal Spray Coatings Roughness,” in Int. Thermal Spray Conference Proc., E. Lugscheider, ed., DVS, Düsseldorf, Germany, 2002, pp. 949–53.

    Google Scholar 

  31. V.V. Sobolev and M. Guilemany: “Droplet Flattening During Thermal Spraying at Off-Normal Angles,” in Thermal Spray: Meeting the Challenges of the 21st Century, C. Coddet, ed., ASM International, Materials Park, OH, 1998, pp. 497–502.

    Google Scholar 

  32. G. Montavon, S. Sampath, C.C. Berndt, H. Herman and C. Coddet: “Effects of the Spray Angle on Splat Morphology During Thermal Spraying,” Surf. Coat. Technol., 1997, 91, pp. 107–15.

    Article  CAS  Google Scholar 

  33. M.P. Kanouff, R.A. Neiser, Jr., and T.J. Roemer: “Surface Roughness on Thermal Spray Coating Made With Off-Normal Spray Angle,” J. Therm. Spray Technol., 1998, 7, pp. 219–28.

    Article  CAS  Google Scholar 

  34. H. Fukanuma and Y. Huang: “Splat Formation in Off-Normal Angle Spray,” in Thermal Spray: Surface Engineering via Applied Research, C.C. Berndt, ed., ASM International, Materials Park, OH, 2000, pp. 767–76.

    Google Scholar 

  35. H. Fukanuma and C.-J. Li: “Mathematical Modeling of Splat Formation at Off-Normal Angles in Thermal Spray,” in United Spray Conference Proc. Düsseldorf (1999), E. Lugscheider and P.A. Kammer, ed., DVS, Düsseldorf, Germany, 1999, pp. 513–18.

    Google Scholar 

  36. S.H. Leigh and C.C. Berndt: “Evaluation of Off-Angle Thermal Spray,” Surf. Coat. Technol., 1997, 89, pp. 213–24.

    Article  CAS  Google Scholar 

  37. G. Trapaga and J. Szekely: “Mathematical Modeling of the Isothermal Impingement of Liquid Droplets in Spraying Processes,” Metal. Trans., 1991, B22, pp. 901–14.

    Google Scholar 

  38. H. Liu, E.J. Lavernia, and R.H. Rangel: “Numerical Simulation of Impingement of Molten Ti, Ni and W Droplets on a Flat Substrate,” J. Phys. D: Appl. Phys., 1993, 26, pp. 1900–15.

    Article  ADS  Google Scholar 

  39. M. Bertagnolli, M. Marchese, and G. Jaccuci: “Modeling of Particles Impacting on a Rigid Substrate Under Plasma Spraying Conditions,” J. Therm. Spray Technol., 1995, 4(1), pp. 41–49.

    CAS  Google Scholar 

  40. Z.G. Feng, G. Montavon, Z.Q. Feng, C. Coddet, and M. Domaszewski: “Finite Elements Modeling of Liquid Particles Impacting Onto Flat Substrates,” in Thermal Spray: Meeting the Challenges of the 21st Century, Vol. 1, C. Coddet, ed., ASM International, Materials Park, OH, 1998, 1, pp. 395–400.

    Google Scholar 

  41. M. Pasandideh-Fard and J. Mostaghimi: “On the Spreading and Solidification of Molten Particles in a Plasma Spray Process: Effect of the Thermal Contact Resistance,” Plasma Chem. Plasma Proc., 1996, 16(1), pp. 83S-98S.

    Article  CAS  Google Scholar 

  42. M. Pasandideh-Fard, R. Bhola, S. Chandra, and J. Mostaghimi: “Deposition of Tin Droplets on a Steel Plate: Simulations and Experiments,” Int. J. Heat Mass Transfer. 1998, 41, pp. 2929–45.

    Article  CAS  Google Scholar 

  43. G. Montavon, Z.G. Feng, C. Coddet, Z.Q. Feng, and M. Domaszewski: “Influence of the Spray Parameters on the Transient Pressure Within a Molten Particle Impacting on a Flat Substrate,” in Thermal Spray: A United Forum for Scientific and Technological Advances, C.C. Berndt, ed., ASM International, Materials Park, OH, 1997, pp. 627–33.

    Google Scholar 

  44. C.-J. Li and J.-L. Li: “Transient Droplet/Substrate Contact Pressure During Droplet Flattening on Flat Substrate in Plasma Spraying,” in Thermal Spray: Surface Engineering via Applied Research, C.C. Berndt, ed., ASM International, Materials Park, OH, 2000, pp. 777–82.

    Google Scholar 

  45. M. Bussmann, S.D. Aziz, S. Chandra, and J. Mostaghimi: “3D Modeling of Thermal Spray Droplet Splashing,” in Thermal Spray: Meeting the Challenges of the 21st Century, C. Coddet, ed., ASM International, Materials Park, OH, 1998, pp. 413–18.

    Google Scholar 

  46. M. Bussmann, J. Mostaghimi, and S. Chandra: “On a Three-Dimensional Volume Tracking Model of Droplets Impact,” Phys. Fluids, 1999, 11, pp. 1406–17.

    Article  ADS  CAS  Google Scholar 

  47. H. Zang: “Theoretical Analysis of Spreading and Solidification of Molten Droplet During Thermal Spray Deposition,” Int. J. Heat Mass Transfer, 1999, 42, pp. 2499–508.

    Article  Google Scholar 

  48. S. Aziz and S. Chandra: “Impact, Recoil and Splashing of Molten Metal Droplets,” Int. J. Heat Mass Transfer, 2000, 43, pp. 2841–57.

    Article  Google Scholar 

  49. M. Pasandideh-Fard, J. Mostaghimi, and S. Chandra: “Numerical Simulation of Thermal Spray Coating Formation,” in Thermal Spray: Surface Engineering via Applied Research, C.C. Berndt, ed., ASM International, Materials Park, OH, 2000, pp. 125–34.

    Google Scholar 

  50. V. Pershin, M. Pasandideh-Fard, J. Mostaghimi, and S. Chandra: “Effect of Substrate Properties on the Formation of Plasma Sprayed Alumina Splats,” in Thermal Spray 2001: New Surface for a New Millenium, C.C. Berndt, ed., ASM International, Materials Park, OH, 2001, pp. 813–20.

    Google Scholar 

  51. R. Ghafouri-Azar, S. Shakeri, S. Chandra, and J. Mostaghimi: “Numerical Simulation of Offset Deposition for Sequential Tin Droplets,” in Proc. of Int. Thermal Spray Conference Essen 2002, E. Lugscheider, ed., DVS Düsseldorf, Germany, 2002, pp. 972–78.

    Google Scholar 

  52. A. Haddadi, A. Grimaud, A. Denoirjean, F. Nardou, and P. Fauchais: “Crystalline Growth Within Alumina and Zirconia Coatings With Coating Temperature Control During Spraying,” in Thermal Spray: Practical Solutions for Engineering Problems, C.C. Berndt, ed., ASM International, Materials Park, OH, 1996, pp. 615–22.

    Google Scholar 

  53. K.A. Roberts and T.W. Clyne: “A Simple Procedure for the Characterization of Spray Deposition Processes. The Line-Scan Test,” Surf. Coat. Technol., 1990, 41, pp. 105–15.

    Article  Google Scholar 

  54. L. Bianchi, A.C. Leger, M. Vardelle, A. Vardelle, and P. Fauchais: “Splat Formation and Cooling of Plasma-Sprayed Zirconia,” Thin Solid Films, 1997, 305, pp. 35–47.

    Article  CAS  Google Scholar 

  55. L. Bianchi, A. Denoirjean, F. Blein, and P. Fauchais: “Microstructural Investigation of Plasma Sprayed Ceramic Splats,” Thin Solid Films, 1977, 299, pp. 125–35.

    Article  Google Scholar 

  56. M. Fukumoto, S. Katoh, and I. Okane: “Splat Behavior of Plasma Sprayed Particles on Flat Substrate Surface,” in Proc. of the 14th Int. Thermal Spray Conference, Vol. 1, A. Ohmori, ed., High Temp. Soc. of Japan, Osaka, Japan, 1995, pp. 353–59.

    Google Scholar 

  57. X. Jiang, J. Matejicek, A. Kulkarni, H. Herman, S. Sampath, R.L. Gilmore, and R.A. Neiser: “Process Maps for Plasma Spray Part II: Deposition and Properties,” in Thermal Spray: Surface Engineering Via Applied Research, C.C. Berndt, ed., ASM International, Materials Park, OH, 2000, pp. 157–63.

    Google Scholar 

  58. T. Chraska and A.H. Kinh: “Effect of Different Substrate Conditions Upon Interface With Plasma Sprayed Zirconia. A TEM Study,” Surf. Coat. Technol., 2002, 157(2–3), pp. 238–46.

    Article  CAS  Google Scholar 

  59. C. Moreau, P. Cielo, and M. Lamontagne: “Flattening and Solidification of Thermally Sprayed Particles,” J. Therm. Spray Technol., 1992, 1(4), pp. 317–23.

    CAS  Google Scholar 

  60. C. Moreau, P. Cielo, M. Lamontagne, S. Dallaire, and M. Vardelle: “Impacting Particle Temperature Monitoring During Plasma Spray Deposition,” Meas. Sci. Technol., 1990, 1, pp. 807–15.

    Article  ADS  CAS  Google Scholar 

  61. C. Moreau, P. Gougeon, and M. Lamontagne: “Influence of Substrate Preparation on the Flattening and Cooling of Plasma Sprayed Particles,” J. Therm. Spray Technol., 1995, 4(1), pp. 25–36.

    CAS  Google Scholar 

  62. P. Gougeon and C. Moreau: “Simultaneous Independent Measurement of Splat Diameter and Cooling Time During Impact on a Substrate of Plasma Sprayed Molybdenum Particles,” in Thermal Spray: A United Forum for Scientific and Technological Advances, C.C. Berndt, ed., ASM International, Materials Park, OH, 1997, pp. 619–26.

    Google Scholar 

  63. P. Gougeon and C. Moreau: “Simultaneous Independent Measurements of Splat Diameter and Cooling Time During Impact on A Substrate of Plasma Sprayed Molybdenum Particles,” J. Therm. Spray Technol., 2001, 10(1), pp. 76–82.

    Article  CAS  Google Scholar 

  64. M. Vardelle, A. Vardelle, P. Fauchais, and C. Moreau: “Pyrometer System for Monitoring the Particle Impact on a Substrate During Plasma Spray Process,” Meas. Sci. Technol., 1994, 5, pp. 205–13.

    Article  ADS  CAS  Google Scholar 

  65. A.C. Leger, M. Vardelle, A. Vardelle, P. Fauchais, S. Sampath, C.C. Berndt, and H. Hermann: “Plasma Sprayed Zirconia: Relationships Between Particle Parameters, Splat Formation and Deposit Generation. Part 1: Impact and Solidification,” in Thermal Spray: Practical Solutions for Engineering Problems, C.C. Berndt, ed., ASM International, Materials Park, OH, 1996, pp. 623–28.

    Google Scholar 

  66. C. Escure, M. Vardelle, and P. Fauchais: “Visualization of Particle Impact in Thermal Spray,” in Thermal Spray: Surface Engineering Via Applied Research, C.C. Berndt, ed., ASM International, Materials Park, OH, 2000, pp. 743–52.

    Google Scholar 

  67. C. Escure, M. Vardelle, A. Vardelle, and P. Fauchais: “Visualization of the Impact of Drops on a Substrate in Plasma Spraying Deposition and Splashing Modes,” in Thermal Spray 2001, New Surface for a New Millenium, C.C. Berndt, K.A. Khor, and E.F. Lugscheider, ed., ASM International, Materials Park, OH, 2001, pp. 805–12.

    Google Scholar 

  68. M. Fukumoto, Y. Huang, and M. Ohwatari: “Flattening Mechanism in Thermal Sprayed Particle Impinging on a Flat Surface,” in Thermal Spray: Meeting the Challenge of the 21st Century, C. Coddet, ed., ASM International, Materials Park, OH, 1998, pp. 401–07.

    Google Scholar 

  69. M. Fukumoto, E. Nishioka, and T. Matsubara: “Effect of Interface Wetting on Flattening of Freely Fallen Metal Droplet Onto a Flat Substrate Surface,” in Thermal Spray: Surface Engineering Via Applied Research, C.C. Berndt, ed., ASM International, Materials Park, OH, 2000, pp. 797–802.

    Google Scholar 

  70. M. Fukumoto, E. Nishioka, and T. Nishiyama: “Proposal for New Criterion for Splashing of Thermal Sprayed Particle Onto a Flat Substrate,” in Thermal Spray 2001, New Surface for a New Millenium, C.C. Berndt, K.A. Khor, and E.F. Lugscheider, ed., ASM International, Materials Park, OH, 2001, pp. 841–48.

    Google Scholar 

  71. M. Fukumoto, T. Nishiyama, and E. Nishioka: “Effect of Surface Morphology of Substrate on Flattening Behavior of Freely Fallen Metal Droplet,” in Proc. Int. Thermal Spray, Conf. Essen 2002, E. Lugscheider, ed., DVS, Düsseldorf, Germany, 2002, pp. 37–41.

    Google Scholar 

  72. N.Z. Mehdizadeh, S. Chandra, and J. Mostaghimi: “Effect of Substrate Temperature and Roughness on Coating Formation,” in Proc. Int. Thermal Spray Conf., Essen 2002, E. Lugscheider, ed., DVS, Düsseldorf, Germany, 2002, pp. 830–37.

    Google Scholar 

  73. J.M. Houben: “Future Development in Thermal Spraying,” in Proc. 2nd National Conference on Thermal Spray, 1984, pp. 1–19.

  74. M. Fukumoto, H. Hayashi, and T. Yokoyama: “Relationship Between Particle’s Splat Pattern and Coating Adhesive Strength of HVOF Sprayed Cu-Alloy,” J. Jpn. Therm. Spray Soc., 1995, 32–3, pp. 149–56 (in Japanese).

    Google Scholar 

  75. L. Bianchi, A. Grimaud, F. Blein, P. Lucchese, and P. Fauchais: “Comparison of Plasma Sprayed Alumina Coatings by RF and DC Plasma Spraying,” J. Therm. Spray Technol., 1995, 4(1), pp. 59–66.

    CAS  Google Scholar 

  76. N. Sakakibara, H. Tsukuda, and A. Notomi: “The Splat Morphology of Plasma Sprayed Particles and the Relation to Coating Properties,” in Thermal Spray: Surface Engineering via Applied Research, C.C. Berndt, ed., ASM International, Materials Park, OH, 2000, pp. 753–58.

    Google Scholar 

  77. L. Pershin, M. Lufitha, S. Chandra, and J. Mostaghimi: “Effect of Substrate Temperature on Nickel Coating Adhesion,” in 15th Int. Symposium on Plasma Chemistry, Vol. 6, A. Bouchoule, J.M. Pouvesle, A.L. Thomann, J.M. Bauchire, and E. Robert, ed., GREMI, CNRS, Univ. of Orléans, France, 2001, pp. 2633–37.

    Google Scholar 

  78. S. Safai and H. Herman: “Microstructural Investigation of Plasma Sprayed Aluminum Coatings,” Thin Solid Films, 1977, 45, pp. 295–307.

    Article  CAS  Google Scholar 

  79. S. Sampath and H. Herman: “Rapid Solidification and Microstructure Dependent During Plasma Spray Deposition,” J. Therm. Spray Technol., 1996, 5(4), pp. 445–56.

    CAS  Google Scholar 

  80. S. Inada and W.J. Yang: “Solidification of Molten Metal Droplets Impinging on a Cold Surface,” Exp. Heat Transfer, 1994, 7(2), pp. 93–100.

    CAS  Google Scholar 

  81. J. Mostaghimi, M.P. Fard, and S. Chandra: “Dynamics of Splat Formation in Plasma Spray Coating Process,” Plasma Chem. Plasma Proc., 2002, 22(1), pp. 59–84.

    Article  CAS  Google Scholar 

  82. Y. Huang, M. Ohwatari, and M. Fukumoto: “Effect of Substrate Material on Flattening Behavior of Plasma Sprayed Ni Particles,” in Proc. 6th Int. Symposium, Japan Welding Society, Osaka, Japan, 1996, pp. 731–36.

    Google Scholar 

  83. M. Fukumoto and Y. Huang: “Flattening Mechanism in Thermal Sprayed Ni Particles Impinging on Flat Substrate Surface,” J. Therm. Spray Technol., 1999, 8(3), pp. 427–32.

    Article  CAS  Google Scholar 

  84. Y. Tanaka and M. Fukumoto: “Investigation of Dominating Factors on Flattening Behavior of Plasma Sprayed Ceramic Particles,” Surf. Coat. Technol., 1999, 120–121, pp. 124–30.

    Article  Google Scholar 

  85. Y. Tanaka and M. Fukumoto “Influence of Solidification and Wetting on Flattening Behavior of Plasma Sprayed Ceramic Particles,” Int. J. Mater. Product Technol., Special Issue, SPM1, 2001, pp. 518–23.

  86. M. Fukumoto, E. Nishioka, and T. Matsubara: “Flattening and Solidification Behavior of Metal Droplet on Flat Substrate Surface Held at Various Temperatures,” Surf. Coat. Technol., 1999, 120–121, pp. 131–37.

    Article  Google Scholar 

  87. E. Nishioka, T. Matsubara, and M. Fukumoto: “Effect of Wetting at Splat/Substrate Interface on Flattening Behavior of Freely Fallen Droplet,” Int. J. Mater. Product Technol., Special Issue, SPM1, 2001, pp. 700–05.

  88. G. Montavon, S. Sampath, C.C. Berndt, H. Herman, and C. Coddet: “Effect of Vacuum Plasma Spray Processing Parameters on Splats,” J. Therm. Spray Technol., 1995, 4(1), pp. 67–74.

    CAS  Google Scholar 

  89. A. Vardelle, N.J. Themelis, M. Vardelle, and P. Fauchais: “Transport and Chemical Rate Phenomena in Plasma Sprays,” J. High Temp. Mater. Proc., 1997, 1(3), pp. 295–314.

    CAS  Google Scholar 

  90. K. Nogi, N. Iwamoto, and K. Ogino: “Wetting Mechanism of Ceramics by Liquid Metals,” Bull. Japan Inst. Metals. 1992, 31(4), pp. 278–81.

    CAS  Google Scholar 

  91. K. Suganuma: “Interface Binding Energy and Strength of Metal/Ceramic Joint,” Bull. Japan Inst. Metals, 1990, 29(11), pp. 882–87.

    CAS  Google Scholar 

  92. W. Liu, G.X. Wang, and E.F. Matthys: “Thermal Analysis and Measurements for a Molten Metal Drop Impacting on a Substrate: Cooling, Solidification and Heat Transfer Coefficient,” Int. J. Heat Mass Transfer. 1995, 38(8), pp. 1387–95.

    Article  CAS  Google Scholar 

  93. W. Hofmeister and R.J. Bayuzick: “Observation of Thermal Profiles During Impact and Solidification of Nickel Droplets,” in Solidification 1998, S.P. Marsh et al., ed., The Minerals, Metals and Materials Society, Warrendale, PA, 1998, pp. 375–87.

    Google Scholar 

  94. T. Bennett and D. Poulikakos: “Heat Transfer Aspects of Splat-Quench Solidification: Modeling and Experiment,” J. Mater. Sci., 1994, 29, pp. 2025–39.

    Article  CAS  Google Scholar 

  95. X.Y. Jiang, Y.P. Wan, X.Y. Wang, H. Zhang, R. Goswami, H. Herman, and S. Sampath: “Investigation of Splat/Substrate Contact During Molybdenum Thermal Spraying,” in Thermal Spray: Surface Engineering via Applied Research, C.C. Berndt, ed., ASM International, Materials Park, OH, 2000, pp. 729–36.

    Google Scholar 

  96. C.-J. Li, J.-L. Li, W.-B. Wang, A. Ohmori, and K. Tani: “Effect of Particle-Substrate Material Combinations on Morphology of Plasma Sprayed Splats,” in Thermal Spray: Meeting the Challenges of the 21st Millenium, C. Coddet, ed., ASM International, Materials Park, OH, 1998, pp. 481–80.

    Google Scholar 

  97. C.-J. Li, J.-L. Li, and W.B. Wang: “The Effect of Substrate Preheating and Surface Organic Covering on Splat Formation,” in Thermal Spray: Meeting the Challenges of the 21st Century, C. Coddet, ed., ASM International, Materials Park, OH, 1998, pp. 473–80.

    Google Scholar 

  98. C.-J. Li, J.-L. Li, W.B. Wang, A.-J. Fu, and A. Ohmori: “A Mechanism of the Splashing During Droplet Splatting,” in Thermal Spraying in United Spray Conference Proc. Düsseldorf (1999), E. Lugscheider and P.A. Kammer, ed., DVS, Düsseldorf Germany, 1999, pp. 530–35.

    Google Scholar 

  99. X. Jiang, Y. Wan, H. Herman, and S. Sampath: “Role of Condensates and Adsorbates on Substrate Surface on Fragmentation of Impinging Molten Droplets During Thermal Spray,” Thin Select Films, 2001, 385(1–2), pp. 132–61.

    Article  CAS  Google Scholar 

  100. V. Pershin, M. Pasandideh-Fard, J. Mostaghimi, and S. Chandra: “Effect of Substrate Properties on the Formation of Plasma Sprayed Alumina Splats,” in Thermal Spray 2001: New Surfaces for a New Millenium, C.C. Berndt, K.A. Khor, and E.F. Lugscheider, ed., ASM International, Materials Park,, OH, 2001, pp. 813–20.

    Google Scholar 

  101. S. Fantassi, M. Vardelle, A. Vardelle, and P. Fauchais: “Influence of the Velocity of Plasma-Sprayed Particles on Splat Formation,” J. Therm. Spray Technol., 1993, 2(4), pp. 379–84.

    CAS  Google Scholar 

  102. M. Vardelle, A. Vardelle, A.C. Leger, and P. Fauchais: “Dynamics of Splat Formation and Solidification in Thermal Spraying Processes,” in Thermal Spray: Industrial Applications, C.C. Berndt and S. Sampath, ed., ASM International, Materials Park, OH, 1994, pp. 555–62.

    Google Scholar 

  103. L. Bianchi, F. Blein, P. Lucchese, M. Vardelle, A. Vardelle, and P. Fauchais: “Effect of Particle Velocity and Substrate Temperature on Alumina and Zirconia Splat Formation,” in Thermal Spray: Industrial Applications, C.C. Berndt and S. Sampath, ed., ASM International, Materials Park, OH, 1994, pp. 569–74.

    Google Scholar 

  104. M. Vardelle, A. Vardelle, A.C. Leger, P. Fauchais, and D. Gobin “Influence of Particle Parameter at Impact on Splat Formation and Solidification in Plasma Spraying Process,” J. Therm. Spray Technol., 1994, 4(1), pp. 50–58.

    Google Scholar 

  105. A.C. Leger, M. Vardelle, A. Vardelle, B. Dussoubs, and P. Fauchais: “Splat Formation: Ceramic Particles on Ceramic Substrates,” in Thermal Spray: Science and Technology, C.C. Berndt and S. Sampath, ed., ASM International, Materials Park,, OH, 1995, pp. 169–74.

    Google Scholar 

  106. M. Vardelle, P. Fauchais, A. Vardelle, and A.C. Leger: “Influence of the Variation of Plasma Torch Parameters on Particle Melting and Solidification,” in Thermal Spray: A United Forum for Scientific and Technological Advances, C.C. Berndt, ed., ASM International, Materials Park, OH, 1997, pp. 535–42.

    Google Scholar 

  107. J. Madejski: “Solidification of Droplet on a Cold Surface,” Int. J. Heat Mass Transfer, 1976, 19, pp. 1009–20.

    Article  MATH  ADS  Google Scholar 

  108. A. Denoirjean, A. Grimaud, P. Fauchais, P. Tristant, C. Tixier, and J. Desmaison: “Splat Formation, First Step for Multitechnique Deposition of Plasma Spraying and Microwave Plasma Enhanced CVD,” in Thermal Spray: Meeting in Challenges of the 21st Century, Vol. 2, C. Coddet, ed., ASM International, Materials Park, OH, 1998, pp. 1369–74.

    Google Scholar 

  109. A. Haddadi, F. Nardou, A. Grimaud, and P. Fauchais: “Generation of the First Layers of a Zirconia Plasma Sprayed Coatings: Correlation Between Splat Layering and Spraying Parameters,” in Thermal Spray: Science and Technology, C.C. Berndt and S. Sampath, ed., ASM International, Materials Park,, OH, 1995, pp. 249–54.

    Google Scholar 

  110. J. Pech, B. Hannoyer, L. Bianchi, P. Fauchais, and A. Denoirjean: “Study of Oxide Layers Obtained on 304L Stainless Steel Substrate Heated by a d.c. Plasma Jet,” in Thermal Spray: A United Forum for Scientific and Technological Advances, C.C. Berndt, ed., ASM International, Materials Park,, OH, 1997, pp. 775–82.

    Google Scholar 

  111. J. Pech, B. Hannoyer, O. Lagnoux, A. Denoirjean, and P. Fauchais: “Influence of Preheating Parameters on the Plasma Jet Oxidation of a Low-Carbon Steel,” in Progress in Plasma Processing of Materials 1999, P. Fauchais and J. Amouroux, ed., Begell House, NY, 1999, pp. 543–51.

    Google Scholar 

  112. J. Pech, B. Hannoyer, A. Denoirjean, and P. Fauchais: “Influence of Substrate Preheating Monitoring on Alumina Splat Formation in d.c. Plasma Process,” in Thermal Spray: Surface Engineering via Applied Research, C.C. Berndt, ed., ASM International, Materials Park,, OH, 2000, pp. 759–65.

    Google Scholar 

  113. N.Z. Mehdizadeh, S. Chandra, and J. Mostaghimi: “Effect of Substrate Temperature and Roughness on Coating Formation,” in Proc. ITSC 2002, E. Lugscheider, ed., DVS, Düsseldorf, Germany, 1999, pp. 830–37.

    Google Scholar 

  114. T. Haure, A. Denoirjean, P. Tristant, H. Hidalgo, C. Leniniven, J. Desmaison, and P. Fauchais: “Alumina Duplex Coating by Multiprocesses: Air Plasma Spraying and Plasma Enhanced Chemical Vapor Deposition,” in Thermal Spray 2001: New Surfaces for a New Millenium, C.C. Berndt, K.A. Khor, and E. Lugscheider, ed., ASM International, Materials Park, OH, 2001, pp. 613–19.

    Google Scholar 

  115. M. Mellali, P. Fauchais, and A. Grimaud: “Influence of Substrate Roughness and Temperature on the Adhesion/Cohesion of Alumina Coatings,” Surf. Coat. Technol., 1996, 81, pp. 275–86.

    Article  CAS  Google Scholar 

  116. H. Fukanuma, R. Xie, N. Ohno, Y. Fujiwara, and S. Kuroda: “Characterization of Roughened Substrate Surface on Bond Strength of Thermal Spray Deposit,” in Proc. ITSC 2002, E. Lugscheider, ed., DVS, Düsseldorf, Germany, 2002, pp. 965–71.

    Google Scholar 

  117. M. Bussmann, S. Chandra and J. Mostaghimi: “Numerical Results of Off-Angle Thermal Spray Particle Impact,” in ITSC99 Proc., E. Lugscheider and P. Kamnaer, ed., DVS, Düsseldorf, Germany, 1999, pp. 783–86.

    Google Scholar 

  118. M.F. Smith, R.A. Neiser, and R.C. Dykhuizen: “An Investigation on the Effects of Droplet Impact Angle in Thermal Spray Deposition,” in Thermal Spray Industrial Applications, C.C. Berndt and S. Sampath, ed., ASM International, Materials Park, OH, 1994, pp. 603–08.

    Google Scholar 

  119. J. Ilavsky, A.J. Allen, G.G. Long, S. Krueger, C.C. Berndt, and H. Herman: “Influence of Spray Angle on the Pore and Crack Microstructure of Plasma Sprayed Deposits,” J. Am. Ceram. Soc., 1997, 80(3), pp. 733–42.

    Article  CAS  Google Scholar 

  120. R. Ghafouri-Azar, J. Mostaghimi, S. Chandra: “Deposition Model of Thermal Spray Coatings,” in Thermal Spray: New Surfaces for a New Millenium, C.C. Berndt, K.A. Khor, and E. Lugscheider, ed., ASM International, Materials Park, OH, 2001, pp. 951–57.

    Google Scholar 

  121. S. Kuroda, T. Deudo, and S. Kitahara: “Quenching Stress in Plasma Sprayed Coatings and Its Correlation With the Deposit Microstructure,” J. Thermal Spray Technol., 1995, 4(1), p. 75.

    CAS  Google Scholar 

  122. S.D. Siegmann and C.A. Brown: “Investigation of Substrate Roughness in Thermal Spraying by a Scale — Sensitive 3D-Fractal Analysis Method,” in Thermal Spray: Meeting Challenges of the 21st Century, C. Coddet, ed., ASM International, Materials Park, OH, 1998, pp. 831–36.

    Google Scholar 

  123. S. Amada, H. Yamada, S. Yematsu, and Y. Saotome: “Modelling and Measurements of Adhesive-Strength of Thermal Sprayed Coatings,” in Thermal Spray: International Advances in Coatings Technology, C.C. Berndt, ed., ASM International, Materials Park, OH, 1992, pp. 915–20.

    Google Scholar 

  124. Y. Matsubara and A. Tomiguchi: “Surface Texture and Adhesion Strength of High Velocity Oxy-Fuel-Sprayed Coatings for Rolls of Steel Mills,” in Thermal Spray: International Advances in Coatings Technology, C.C. Berndt, ed., ASM International, Materials Park, OH, 1992, pp. 637–41.

    Google Scholar 

  125. N. Llorca-Isern, Gemma Bertran Vidal, J. Jorba, L. Bianchi, and D. Sanchez: “Estimation of Three-Dimensional Connectivity of Internal Defects in Coatings Using Fractal Analysis,” J. Therm. Spray Technol., 2001, 10(2), pp. 287–92.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fauchais, P., Vardelle, A., Vardelle, M. et al. Knowledge concerning splat formation: An invited review. J Therm Spray Tech 13, 337–360 (2004). https://doi.org/10.1361/10599630419670

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1361/10599630419670

Keywords

Navigation