Skip to main content
Log in

Particle methods for multiscale simulation of complex flows

  • Review
  • Published:
Chinese Science Bulletin

Abstract

The multi-scale structures of complex flows have been great challenges to both theoretical and engineering researches, and multi-scale modeling is the natural way in response. Particle methods (PMs) are ideal constitutors and powerful probes of multi-scale models, owing to their physical insight and computational simplicity. In this paper, the role of different PMs for multi-scale modeling of complex flows is critically reviewed and possible development of PMs in this background is prospected, with the emphasis on pseudo-particle modeling (PPM). The performances of some different PMs are compared in simulations and new development in the fundamentals and applications of PPM is also reported, demonstrating PPM as a unique PM for multi-scale modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, J., Kwauk, M., Exploring complex systems in chemical engineering —the multi-scale methodology, Chemical Engineering Science, 2003, 58(4–6): 521–535.

    Article  CAS  Google Scholar 

  2. Lesieur, M., Metais, O., New trends in large-eddy simulations of turbulence, Annual Review of Fluid Mechanics, 1996, 28: 45–82.

    Article  Google Scholar 

  3. Es, W., Huang, Z., Matching conditions in atomistic-continuum modeling of materials, Physical Review Letters, 2001, 85: 135501–1-135501–4.

    Google Scholar 

  4. Es, W., Huang, Z., A dynamic atomistic-continuum method for the simulation of crystalline materials, Journal of Computational Physics, 2002, 182: 234–261.

    Article  CAS  Google Scholar 

  5. Curtin, W. A., Miller, R. E., Atomistic/continuum coupling in computational materials science, Modelling and Simulation in Materials Science and Engineering, 2003, 11: R33-R68.

    Article  CAS  Google Scholar 

  6. O’Connell, S. T., Thompson, P. A., Molecular dynamics-continuum hybrid computations: A tool for studying complex fluid flows, Physical Review E, 1995, 52(6): 5792–5795.

    Article  Google Scholar 

  7. Garcia, A. L., Bell, J. B., Crutchfield, W. Y. et al., Adaptive mesh and algorithm refinement using direct simulation Monte Carlo, Journal of Computational Physics, 1999, 154: 121–134.

    Article  Google Scholar 

  8. Li, J., Kwauk, M., Particle-fluid Two-phase Flow, the Energyminimization Multi-scale Method, Beijing: Metallurgical Industry Press, 1994.

    Google Scholar 

  9. Ge, W., Li, J., Pseudo-particle approach to hydrodynamics of gas/solid two-phase flow, in Proceedings of the 5th International Conference on Circulating Fluidized Bed (eds. Li, J., Kwauk, M.), Beijing: Science Press, 1996, 260–265.

    Google Scholar 

  10. Ge, W., Li, J., Macro-scale phenomena reproduced in microscopic systems—pseudo-particle modeling of fluidization, Chemical Engineering Science, 2003, 58(8): 1565–1585.

    Article  CAS  Google Scholar 

  11. Alder, B. J., Wainwright, T. E., Phase transition for a hard sphere system, Journal of Chemical Physics, 1957, 27: 1208–1209.

    Article  CAS  Google Scholar 

  12. Rapaport, D. C., Microscale hydrodynamics: Discrete-particle simulation of evolving flow patterns, Physical Review A, 1987, 36(7): 3288–3299.

    Article  PubMed  Google Scholar 

  13. Lucy, L. B., A numerical approach to the testing of the fission hypothesis, The Astronomical Journal, 1977, 83: 1013–1024.

    Article  Google Scholar 

  14. Gingold, R. A., Monaghan, J. J., Smoothed particle hydrodynamics: theory and application to non-spherical stars, Monthly Notification ofthe Royal Astronamy Society, 1977, 181: 375.

    Google Scholar 

  15. Monaghan, J. J., Smoothed particle hydrodynamics, Annual Review in Astronautics and Astrophysics, 1992, 30: 543–574.

    Article  Google Scholar 

  16. Takeda, H., Miyama, S. M., Sekiya, M., Numerical simulation of viscous flow by smoothed particle hydrodynamics, Progress in Theoretical Physics, 1994, 92: 939–960.

    Article  Google Scholar 

  17. Koshizuka, S., Tamako, Y., Oka, Y., A particle method for incompressible viscous flow with fluid fragmentation, Journal of Computational Fluid Dynamics, 1995, 4: 29.

    Google Scholar 

  18. Koshizuka, S., Oka, Y., Moving-particle semi-implicit method for fragmentation of incompressible fluid, Nuclear Science and Engineering, 1996, 123: 421.

    CAS  Google Scholar 

  19. Hoogerbrugge, P. J., Koelman, J. M. V. A., Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics, Europhysics Letters, 1992, 19(3): 155–160.

    Article  Google Scholar 

  20. Español, P., Fluid particle model, Physical Review E, 1998, 57: 2930–2948.

    Article  Google Scholar 

  21. Español, P., Revenga, M., Smoothed dissipative particle dynamics, Physical Review E, 2003, 67: 026705.

    Article  CAS  Google Scholar 

  22. Hirt, C. W., Nichols, B. D., Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of Computational Physics, 1981, 39: 201–226.

    Article  Google Scholar 

  23. Hu, H. H., Direct simulation of flows of solid-liquid mixtures, International Journal of Multiphase Flow, 1996, 22: 335–352.

    Article  CAS  Google Scholar 

  24. Glowinski, R., Pan, T. W., Hesla, T. I. et al., A distributed Lagrange multiplier/fictitious domain method for particulate flows, International Journal of Multiphase Flow, 1999, 25: 755–794.

    Article  CAS  Google Scholar 

  25. Unverdi, S. O., Tryggvason, G. A., Front-tracking method for viscous, incompressible multi-fluid flows, Journal of Computational Physics, 1992, 100: 25–37.

    Article  Google Scholar 

  26. Tryggvason, G., Bunner, B., Esameeli, A. et al., A front-tracking method for the computations of multiphase flow, Journal of Computational Physics, 2001, 169: 708–759.

    Article  CAS  Google Scholar 

  27. Osher, S., Fedkiw, R. P., Level set methods: An overview and some recent results, Journal of Computational Physics, 2001, 169: 463.

    Article  CAS  Google Scholar 

  28. Li, J., Wen, L., Ge, W. et al., Dissipative structure in concurrent-up gas-solid flow, Chemical Engineering Science, 1998, 53(19): 3367–3379.

    Article  CAS  Google Scholar 

  29. Li, J., Zhang, J., Ge, W. et al., Variational multi-scale methodology for complex systems, Chemical Engineering Science, 2004, 59(8–9): 1687–1700.

    Article  CAS  Google Scholar 

  30. Ge, W., Li, J., Macro-scale pseudo-particle modeling for particle-fluid systems, Chinese Science Bulletin, 2001, 46(18): 1503–1507.

    Article  Google Scholar 

  31. Ge, W., Li, J., Simulation of particle-fluid systems with macroscale, Powder Technology, 2003, 137(1–2): 99–108.

    Article  CAS  Google Scholar 

  32. Bird, G. A., Approach to translational equilibrium in a rigid sphere gas, Physics of Fluids, 1963, 6: 1518–1519.

    Article  CAS  Google Scholar 

  33. Oran, E. S., Oh, C. K., Cybyk, B. Z., Direct simulation Monte Carlo: recent advances and applications, Annual Review of Fluid Mechanics, 1998, 30: 403–441.

    Article  Google Scholar 

  34. Chen, S., Doolen, G. D., Lattice Boltzmann method for fluid flows, Annual Review of Fluid Mechanics, 1998, 30: 329–364.

    Article  Google Scholar 

  35. Boon, J. P., Statistical mechanics and hydrodynamics of lattice gas automata: an overview, Physica D, 1991, 47(1–2): 3–8.

    Article  Google Scholar 

  36. Ge, W., Zhang, J., Li, T. et al., Pseudo-particle simulation of multiscale heterogeneity in fluidization, Chinese Science Bulletin, 2003, 48(7): 634–636.

    Article  CAS  Google Scholar 

  37. Mo, G., Rosenberger, F., Molecular-dynamics simulation of flow in a two-dimensional channel with atomically rough walls, Physical Review A, 1990, 42(8): 4688–4692.

    Article  PubMed  Google Scholar 

  38. Horio, M., Kuroki, H., Three-dimensional flow visualization of dilutely dispersed solids in bubbling and circulating fluidized beds, Chemical Engineering Science, 1994, 49(15): 2413–2421.

    Article  CAS  Google Scholar 

  39. Morris, J. P., Fox, P. J., Zhu, Y., Modeling low Reynolds number incompressible flows using SPH, Journal of Computational Physics, 1997, 136: 214–236.

    Article  Google Scholar 

  40. Schoenberg, I. J., Contributions to the problem of approximation of equidistant data by analytic functions, Q. Appl. Math., 1946, 4: 45.

    Google Scholar 

  41. Chorin, A. J., Discretization of a vortex sheet with an example of roll-up, Journal of Computational Physics, 1973, 13: 423–429.

    Article  Google Scholar 

  42. Leonard, A., Vortex methods for flow simulation, Journal of Computational Physics, 1980, 37: 289.

    Article  CAS  Google Scholar 

  43. Mansfield, J. R., Knio, O. M., Meneveau, C., Dynamic LES of colliding vortex rings using a 3D vortex method, Journal of Computational Physics, 1999, 152: 305–45.

    Article  CAS  Google Scholar 

  44. Posch, H. A., Hoover, W. G., Kum, O., Steady-state shear flows via nonequilibrium molecular dynamics and smooth-particle applied mechanics, Physical Review E, 1995, 52(2): 1711–1720.

    Article  CAS  Google Scholar 

  45. Ge, W., Li, J., General approach for discrete simulation of complex systems, Chinese Science Bulletin, 2002, 47(14): 1172–1175.

    Google Scholar 

  46. Satheesh, V. K., Chhabra, R. P., Eswaran, V., Steady incompressible fluid flow over a bundle of cylinders at moderate Reynolds numbers, The Canadian Journal of Chemical Engineering, 1999, 77: 978–987.

    Article  CAS  Google Scholar 

  47. He, X., Luo, L. S., Dembo, M., Some progress in lattice Boltzmann method, Part I, Nonuniform mesh grids, Journal of Computational Physics, 1996, 129: 357.

    Article  Google Scholar 

  48. Filippova, O., Succi, S., Mazzocco, F. et al., Multiscale lattice Boltzmann schemes with turbulence modeling, Journal of Computational Physics, 2001, 170: 812–829.

    Article  Google Scholar 

  49. Lu, Z., Liao, Y., Qian, D., McLaughlin, J. B. et al., Large eddy simulations of a stirred tank using the lattice Boltzmann method on a nonuniform grid, Journal of Computational Physics, 2002, 181: 675–704.

    Article  CAS  Google Scholar 

  50. Grunau, D., Chen, S., Eggert, K., A lattice Boltzmann model for multi-scale fluid flows, Physics of Fluids A, 1993, 5(10): 2557–2562.

    Article  CAS  Google Scholar 

  51. Nourgaliev, R. R., Dinh, T. N., Theofanous, T. G. et al., The lattice Boltzmann equation method: theoretical interpretation, numerics and implications, International Journal of Multiphase Flow, 2003, 29: 117–169.

    Article  CAS  Google Scholar 

  52. Shan, X., Chen, H., Lattice Boltzmann model for simulating flows with multiple phases and components, Physical Review E, 1993, 47 (3): 1815–1819.

    Article  Google Scholar 

  53. Wagner, A. J., Yeomans, J. M., Effect of shear on Droplets in a binary mixture, International Journal of Modern Physics C., 1997, 8 (4): 773–782.

    Article  Google Scholar 

  54. Serrano, M., Espanol, P., Thermodynamically consistent mesoscopic fluid particle model, Physical Review E, 2001, 64: 046115–1-046115–17.

    Article  CAS  Google Scholar 

  55. Kim, J. M., Phillips, R. J., Dissipative particle dynamics simulation of flow around spheres and cylinders at finite Reynolds numbers, Chemical Engineering Science, 2004, 59: 4155–4168.

    CAS  Google Scholar 

  56. Marsh, C. A., Backx, G., Ernst, M. H., Fokker-Planck-Boltzmann equation for dissipative particle dynamics, Europhysics Letters, 1997, 38: 411–415.

    Article  CAS  Google Scholar 

  57. Ge, W., Li, J., Simulation of discrete systems with local interactions: a conceptual model for massive parallel processing, Computers and Applied Chemistry (in Chinese), 2000, 17(5): 385–388.

    CAS  Google Scholar 

  58. Tang, D., Ge, W., Wang, X. et al., Parallelizing of macro-scale pseudo-particle modeling for particle-fluid systems, Science in China, Ser. B, 2004, 47: 434–442.

    Article  CAS  Google Scholar 

  59. Wang, X., Guo, L., Ge, W. et al., Parallel implementation of macro-scale pseudo-particle simulation for particle-fluid systemsmulti-dimensional space-decomposition with dynamic load balancing, Computers & Chemical Engineering, 2004, in print.

  60. Happel, J., Brenner, H., Low Reynolds Number Hydrodyanimcs with Special Applications to Particulate Media, 2nd ed., Leyden: Noordhoff International Publishing, 1973, 235–280.

    Google Scholar 

  61. Murray, J. O., On the mathematics of fluidization, part I, Fundamental equations and wave propagation, Journal of Fluid Mechanics, 1965, 21: part 3.

  62. Gidaspow, D., Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions with Applications, San Diego: Academic Press, 1994.

    Google Scholar 

  63. Tsuji, Y., Kawaguchi, T., Tanaka, T., Discrete particle simulation of two-dimensional fluidized bed, Powder Technology, 1993, 77(1): 79–97.

    Article  CAS  Google Scholar 

  64. Hoomans, B. P. B., Kuipers, J. A. M., Briels, W. J. et al., Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: a hard-sphere approach, Chemical Engineering Science, 1996, 51(1): 99–108.

    Article  CAS  Google Scholar 

  65. Ergun, S., Fluid Flow through Packed Columns, Chemical Engineering Progress, 1952, 48(2): 89–94.

    CAS  Google Scholar 

  66. Wen, C. Y., Yu, Y. H., Mechanics of Fluidization, Chemical Engineering Symposium Series, 1966, 62(62): 100–111.

    CAS  Google Scholar 

  67. Bruce, C. D., Berkowitz, M. L., Perera, L. et al., Journal of Physical Chemistry B, 2002, 106: 3788–3793.

    Article  CAS  Google Scholar 

  68. Karniadakis, G. E., Beskok, A., Micro Flows: Fundamental and Simulation, Berlin: Springer-Verlag, 2002.

    Google Scholar 

  69. Qi, D., Simulation of fluidization of cylindrical multiparticles in a three-dimensional space, International Journal of Multiphase Flow, 2001, 27: 107–118.

    Article  CAS  Google Scholar 

  70. Ladd, A. J. C., Verberg, R., Lattice Boltzmann Simulations of particle-fluid suspensions. Journal of Statistical Physics, 2001, 104(516): 1191–1251.

    Article  CAS  Google Scholar 

  71. Hoover, W. G., Isomorphism linking smooth particles and embedded atoms, Physica A, 1998, 244–254.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Ge.

About this article

Cite this article

Ge, W., Ma, J., Zhang, J. et al. Particle methods for multiscale simulation of complex flows. Chin.Sci.Bull. 50, 1057–1069 (2005). https://doi.org/10.1360/04wb0108

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1360/04wb0108

Keywords

Navigation