Skip to main content
Log in

Rhythmicity of engraftment and altered cell cycle kinetics of cytokine-cultured murine marrow in simulated microgravity compared with static cultures

  • Articles
  • Cell Growth/Differentiation/Apoptosis
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Space flight with associated microgravity is complicated by “astronaut's anemia” and other hematologic abnormalities. Altered erythroid differentiation, red cell survival, plasma volume, and progenitor numbers have been reported. We studied the impact of microgravity on engraftable stem cells, culturing marrow cells in rotary wall vessel (RWV) culture chambers mimicking microgravity and in normal gravity nonadherent Teflon bottles. A quantitative competitive engraftment technique was assessed under both conditions in lethally irradiated hosts. We assessed 8-wk engraftable stem cells over a period spanning at least one cell cycle for cytokine (FLT-3 ligand, thrombopoietin [TPO], steel factor)-activated marrow stem cells. Engraftable stem cells were supported out to 56 h under microgravity conditions, and this support was superior to that seen in normal-gravity Teflon bottle cultures out to 40 h, with Teflon bottle culture support superior to RWV from 40 to 56 h. A nadir of stem cell number was seen at 40 h in Teflon and 48 h in RWV, suggesting altered marrow stem cell cycle kinetics under microgravity. This is the first study of engraftable stem cells under microgravity conditions, and the differences between microgravity and normal gravity cultures may present opportunities for unique future stem cell expansion strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akins, R. E.; Schroedl, N. A.; Gonda, S. R.; Hartzell, C. R. Neonatal rat heart cells cultured in simulated microgravity. In Vitro Cell. Dev. Biol. 33A:337–343; 1997.

    Google Scholar 

  • Alfrey, C. P.; Udden, M. M.; Leach-Huntoon, C.; Driscoll, T.; Pickett, M. M. Control of red cell mass in space flight. J. Appl. Physiol. 81:98–104; 1996.

    PubMed  CAS  Google Scholar 

  • Allebban, Z.; Gibson, L. A.; Lange, R. D., et al. Effects of space flight on rat erythroid parameters. J. Appl. Physiol. 81:117–122; 1996.

    PubMed  CAS  Google Scholar 

  • Armstrong, J. W.; Gerren, R. A.; Chapes, S. K. The effect of space and parabolic flight on macrophage hematopoiesis and function. Exp. Cell Res. 216:160–168; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Atkov, O.; Bednenko, V. S. Hypokinesia and weightlessness: clinical and physiological aspects (translated from Russian), Madison, CT: International Universities Press; 1992.

    Google Scholar 

  • Baines, P.; Visser, J. W. Analysis and separation of murine bone marrow stem cells by H33342 fluorescence-activated cell sorting. Exp. Hematol. 11:701–708; 1983.

    PubMed  CAS  Google Scholar 

  • Baker, T.; Goodwin, T. Three dimensional culture of bovine chrondrocytes in rotating wall vessels. In Vitro Cell. Dev. Biol. 33A:358–365; 1997.

    Google Scholar 

  • Bertoncello, I.; Hodgson, G. S.; Bradley, T. R. Multiparameter analysis of transplantable hematopoietic stem cells: I. The separation and enrichment of stem cells homing to marrow and spleen on the basis of Rhodamine-123 fluorescence. Exp. Hematol. 13:999–1006; 1985.

    PubMed  CAS  Google Scholar 

  • Boswell, H. S.; Wade, P. M., Jr.; Quesenberry, P. J. Thy-1 antigen expression by murine high-proliferative capacity hematopoietic progenitor cells. I. Relation between sensitivity to depletion by Thy-1 antibody and stem cell generation potential. Immunol. 133:2940–2949; 1984.

    CAS  Google Scholar 

  • Burkovskaya, T. E.; Korolkov, V. I. Hemopoiesis in bone marrow of monkeys after spaceflight. J. Gravit. Physiol. 7:S129-S134; 2000.

    PubMed  CAS  Google Scholar 

  • Carrier, R. L.; Papadaki, M.; Rupnick, M., et al. Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol. Bioeng. 64:580–589; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Carvalho, M. A.; Arcanjo, K.; Silva, L. C.; Borojevic, R. The capacity of connective tissue stromas to sustain myelopoiesis depends both upon the growth factors and the local intercellular environment. Biol. Cell 92:605–614; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Chopra, V.; Dinh, T.; Hannigan, E. Three-dimensional endothelial-tumor epithelial cell interactions in human cervical cancer. In Vitro Cell. Dev. Biol. 33A:432–444; 1997.

    Google Scholar 

  • Colvin, G. A.; Carlson, J. E.; Lambert, J.-F.; McAuliffe, C. I.; Quesenberry, P. J. Hematopoietic stem cells in microgravity [abstract]. Exp. Hematol. 28:118; 2000.

    Article  Google Scholar 

  • Davis, T. A.; Wiesmann, W.; Kidwell, W., et al. Effect of spaceflight on human stem cell hematopoiesis: suppression of erythropoiesis and myelopoiesis. J. Leukoc. Biol. 60:69–76; 1996.

    PubMed  CAS  Google Scholar 

  • Dulbecco, R.; Stoker, M. G. Conditions determining initiation of DNA synthesis in 3T3 cells. Proc. Natl. Acad. Sci. USA 66:204–210; 1970.

    Article  PubMed  CAS  Google Scholar 

  • Duray, P. H.; Hatfill, S. J.; Pellis, N. R. Tissue culture in microgravity. Sci. Med. 4:46–55; 1997.

    CAS  Google Scholar 

  • Francis, K. M.; O'Connor, K. C.; Spaulding, G. F. Cultivation of fall armyworm ovary cells in simulated microgravity. In Vitro Cell. Dev. Biol. 33A:332–336; 1997.

    Google Scholar 

  • Frangos, J. A.; Eskin, S. G.; McIntire, L. V.; Ives, C. L. Flow effects of prostacyclin production by cultured human endothelial cells. Science 227:1477–1479; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Freed, L. E.; Vunjak-Novakovic, G. Microgravity tissue engineering. In Vitro Cell. Dev. Biol. 33A:381–385; 1997.

    Google Scholar 

  • Goodwin, T. J.; Jessup, J. M.; Wolf, D. A. Morphologic differentiation of colon carcinoma cell lines HT-29 and H5-29 km in rotating-wall vessels. In Vitro Cell. Dev. Biol. 28A:47–60; 1992.

    PubMed  CAS  Google Scholar 

  • Goodwin, T. J.; Schroeder, W. F.; Wolf, D. A.; Mayer, M. P. Rotating-wall vessel coculture of small intestine as a prelude to tissue modeling: aspects of simulated microgravity. Proc. Soc. Exp. Biol. Med. 202:181–192; 1993.

    PubMed  CAS  Google Scholar 

  • Habibian, H. K.; Peters, S. O.; Hsieh, C. C., et al. The fluctuating phenotype of the lympho-hematopoietic stem cell with cell cycle transit. J. Exp. Med. 188:393–398; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Hatfill, S. J.; Margolis, L. B.; Duray, P. In vitro maintenance of normal and pathological human salivary gland tissue in a NASA-designed rotating wall vessel bioreactor. Cell Vision 3:397–401; 1996.

    Google Scholar 

  • Hawkins, A. L.; Jones, R. J.; Zehnbauer, B. A., et al. Fluorescence in situ hybridization to determine engraftment status after murine bone marrow transplant. Cancer Genet. Cytogenet. 64:145–148; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Jessup, J. M.; Brown, D.; Fitzgerald, W., et al. Induction of carcinoembryonic antigen expression in a three dimensional culture system. In Vitro Cell. Dev. Biol. 33A:352–357; 1997.

    Google Scholar 

  • Kaysen, J. H.; Campbell, W. C.; Majewski, R. R. et al. Select de novo gene and protein expression during renal epithelial cell culture in rotating wall vessels is shear stress dependent. J. Membr. Biol. 168:77–89; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Khaoustov, V. I.; Darlington, G. J.; Soriano, H. E., et al. Induction of three-dimensional assembly of human liver cells by simulated microgravity. In Vitro Cell. Dev. Biol. 35A:501–509; 1999.

    Google Scholar 

  • Klement, B. J.; Spooner, B. S. Utilization of microgravity bioreactors for differentiation of mammalian skeletal tissue. J. Cell Biochem. 51:252–256; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Koller, M. R.; Papoutsakis, E. T. Cell adhesion in animal cell culture: physiological and fluid-mechanical implications. Bioprocess Technol. 20:61–110; 1995.

    PubMed  CAS  Google Scholar 

  • Lamar, E. E.; Palmer, E. Y-encoded, species-specific DNA in mice: evidence that the Y chromosome exists in two polymorphic forms in inbred strains. Cell 37:171–177; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Lange, R. D.; Andrews, R. B.; Gibson, L. A., et al. Hematological measurements in rats flown on Spacelab shuttle, SL-3. Am. J. Physiol. 252:R216-R221; 1987.

    PubMed  CAS  Google Scholar 

  • Lange, R. D.; Gibson, L. A.; Driscoll, T. B.; Allebban, Z.; Ichiki, A. T. Effects of microgravity and increased gravity on bone marrow of rats. Aviat. Space Environ. Med. 65:730–735; 1994.

    PubMed  CAS  Google Scholar 

  • Leach, C. S.; Johnson, P. C.; Clintron, N. M. The endocrine system in space flight. Acta Astronaut. 17:161–166; 1998.

    Article  Google Scholar 

  • Lelkes, P. I.; Galvan, D. L.; Hayman, G. T., et al. Simulated microgravity conditions enhance differentiation of cultured PC12 cells towards the neuroendocrine phenotype. In Vitro Cell. Dev. Biol. 34A:316–325; 1998.

    Google Scholar 

  • Lewis, M. L.; Moriarity, D. M.; Campbell, P. S. Use of microgravity bioreactors for development of an in vitro rat salivary gland cell culture model. J. Cell Biochem. 51:265–273; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Margolis, L.; Hatfill, S.; Chuaqui, R., et al. Long-term organ culture of human prostate tissue in a NASA-designed rotating wall bioreactor. J. Urol. 161:290–297; 1999.

    Article  PubMed  CAS  Google Scholar 

  • McIntire, L. V.; Frangos, J. A.; Rhee, B. G.; Eskin, S. G.; Hall, E. R. The effect of fluid mechanical stress on cellular arachidonic acid metabolism. Ann. N. Y. Acad. Sci. 516:513–524; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Miyatake, S.; Yokota, T.; Lee, F.; Arai, K. I. Structure of the chromosomal gene for murine interleukin 3. Proc. Natl. Acad. Sci. USA 82:316–320; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Molnar, G.; Schroedl, N. A.; Gonda, S. R.; Hartzell, C. R. Skeletal muscle satellite cells cultured in simulated microgravity. In Vitro Cell. Dev. Biol. 33A:386–391; 1997.

    Google Scholar 

  • National Research Council. Laboratory animal management: rodents. Washington, DC: National Academy Press; 1996:141–146.

    Google Scholar 

  • Nilsson, S. K.; Dooner, M. S.; Tiarks, C. Y.; Weier, H. U.; Quesenberry, P. J. Potential and distribution of transplanted hematopoietic stem cells in a nonablated mouse model. Blood 89:4013–4020; 1997.

    PubMed  CAS  Google Scholar 

  • Plett, P. A.; Frankovitz, S. M.; Abonour, R.; Orschell-Traycoff, C. M. Proliferation of human hematopoietic bone marrow cells in simulated microgravity. In Vitro Cell. Dev. Biol. 37A:73–78; 2001.

    Article  Google Scholar 

  • Powers, M. J.; Griffith, L. G. Adhesion-guided in vitro morphogenesis in pure and mixed cell cultures. Microsc. Res. Tech. 43:379–384; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Qiu, Q. Q.; Ducheyne, P.; Ayyaswamy, P. S. Fabrication, characterization and evaluation of bioceramic hollow microspheres used as microcarriers for 3-D bone tissue formation in rotating bioreactors. Biomaterials 20:989–1001; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Reddy, G. P. Compartmentation of deoxypyrimidine nucleotides for nuclear DNA replication in S phase mammalian cells. J. Mol. Recognit. 2:75–83; 1980.

    Article  Google Scholar 

  • Reddy, G. P. V.; Tiarks, C. Y.; Pang, L.; Quesenberry, P. J. Synchronization and cell cycle analysis of pluripotent hematopoietic progenitor stem cells. Blood 90:2293–2299; 1997.

    PubMed  CAS  Google Scholar 

  • Riedy, M. C.; Muirhead, K. A.; Jensen, C. P.; Stewart, C. C. Use of a photolabeling technique to identify nonviable cells in fixed homologous or heterologous cell population. Cytometry 12:133–139; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, D.; Convertino, V. A.; Vernikos, J. The sympathetic nervous system and the physiologic consequences of spaceflight: a hypothesis. Am. J. Med. Sci. 308:126–132; 1994a.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, D.; Krantz, S. B.; Biaggioni, I. The anemia of microgravity and recumbency: role of sympathetic neural control of erythropoietin production. Acta Astronaut. 33:137–141; 1994b.

    Article  PubMed  CAS  Google Scholar 

  • Rozen, S.; Skaletsky, H. J. Primer3. Code available at http://www.genome.wi.mit.edu./genome_software/other/primer3.html;1998

  • Rutzky, L.; Kloc, M.; Bilinski, S., et al. Microgravity culture conditions decrease immunogenicity but maintain excellent morphology of pancreatic islets. Transpl. Proc. 33:388; 2001.

    Article  CAS  Google Scholar 

  • Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular cloning. A laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989.

    Google Scholar 

  • Schwarz, R. P.; Goodwin, T. J.; Wolf, D. A. Cell culture for three-dimensional modeling in rotation wall vessels: an application of simulated microgravity. J. Tissue Cult. Methods. 14:51–58; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Stathopoulos, N. A.; Hellums, J. D. Shear stress effects on human embryonic kidney cells in vitro. Biotechnol. Bioeng. 27:1021–1026; 1985.

    Article  CAS  PubMed  Google Scholar 

  • Stoker, M. G. P.; Rubin, H. Density dependent inhibition of cell growth in culture. Nature 215:171–172; 1967.

    Article  PubMed  CAS  Google Scholar 

  • Sytkowski, A. J.; Davis, K. L. Erythroid cell growth and differentiation in vitro in the simulated microgravity environment of the NASA rotating wall vessel bioreactor. In Vitro Cell. Dev. Biol. 37A(2):79–83; 2001.

    Article  Google Scholar 

  • Tavassoli, M. Anemia of spaceflight. Blood 60:1059–1067; 1982.

    PubMed  CAS  Google Scholar 

  • Taylor, G. R. Cell anomalies associated with space flight conditions. In: Zouhair Atassi, M., ed. Immunology of proteins and peptides IV. New York, NY: Plenum Press; 1987:269–271.

    Google Scholar 

  • Tsao, Y.; Goodwin, T.; Wolf, D.; Spaulding, G. Responses of gravity level, variations on the NASA/JSE bioreactor system. Physiologist 35(Suppl. 1):549–550; 1992.

    Google Scholar 

  • Udden, M. M.; Driscoll, T. B.; Pickett, M. H.; Leach-Huntoon, C. S.; Alfrey, C. P. Decreased production of red blood cells in human subjects exposed to microgravity. J. Lab. Clin. Med. 125:442–449; 1995.

    PubMed  CAS  Google Scholar 

  • Vunjak-Novakovic, G.; Martin, I.; Obradovic, B., et al. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J. Orthop. Res. 17:130–138; 1999.

    Article  PubMed  CAS  Google Scholar 

  • West, J. B. Physiology in microgravity. J. Appl. Physiol. 89:379–384; 2000.

    PubMed  CAS  Google Scholar 

  • Yoffe, B.; Darlington, G. J.; Soriano, H. E., et al. Cultures of human liver cells in simulated microgravity environment. Adv. Space Res. 24:829–836; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Zhau, H. E.; Goodwin, T. J.; Chang, S. M.; Baker, T. L.; Chung, L. W. Establishment of a three dimensional human prostate organiod culture under microgravity-simulated conditions: evaluation of androgen-induced growth and PSA expression. In Vitro Cell. Dev. Biol. 33A:375–380; 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald A. Colvin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colvin, G.A., Lambert, JF., Carlson, J.E. et al. Rhythmicity of engraftment and altered cell cycle kinetics of cytokine-cultured murine marrow in simulated microgravity compared with static cultures. In Vitro Cell.Dev.Biol.-Animal 38, 343–351 (2002). https://doi.org/10.1290/1071-2690(2002)038<0343:ROEAAC>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1071-2690(2002)038<0343:ROEAAC>2.0.CO;2

Key words

Navigation