Skip to main content
Log in

Mechanism of cytotoxicity of paraquat

  • Review Article
  • Published:
Environmental Health and Preventive Medicine Aims and scope

Abstract

Acute paraquat poisoning seems to be very complex because many possible mechanisms of paraquat cytotoxicity have been reported. Some may not be the cause of paraquat poisoning but the result or an accompanying phenomenon of paraquat action. The mechanism critical for cell damage is still unknown. Paraquat poisoning is probably a combination of several paraquat actions. Arguing which mechanism is more critical may not be important, and these clarified mechanisms should be connected and utilized in the development of treatment for paraquat poisoning. Many people still die of pulmonary fibrosis after paraquat exposure. The next target of study will be to verify the mechanism of pulmonary fibrosis by paraquat on the basis of the outcome of studies such as this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bus JS, Aust SD and Gibson JE. Superoxide-and singlet oxygen-catalyzed lipid peroxidation as a possible mechanism for paraquat (methyl viologen) toxicity. Biochem. Biophys. Res. Commun. 1974; 58: 749–755.

    Article  PubMed  CAS  Google Scholar 

  2. Kato R, Iwasaki K and Noguchi H. Stimulatory effect of FMN and methyl viologen on cytochrome P-450 dependent reduction of tertiary amine N-oxide. Biochem. Biophys. Res. Commun. 1976; 72: 267–274.

    Article  PubMed  CAS  Google Scholar 

  3. Clejan L and Cederbaum AI. Synergistic interactions between NADPH-cytochrome P-450 reductase, paraquat, and iron in the generation of active oxygen radicals. Biochem. Pharmacol. 1989; 38: 1779–1786.

    Article  PubMed  CAS  Google Scholar 

  4. Talcott RE, Shu H and Wei ET. Dissociation of microsomal oxygen reduction and lipid peroxidation with the electron acceptors, paraquat and menadione. Biochem. Pharmacol. 1979; 28: 665–671.

    Article  PubMed  CAS  Google Scholar 

  5. Castro GD, Lopez A and Castro JA. Evidence for hydroxyl free radical formation during paraquat but not for nifurtimox liver microsomal biotransformation. A dimethyl-sulfoxide scavenging study. Arch. Toxicol. 1988; 62: 355–358.

    Article  PubMed  CAS  Google Scholar 

  6. Hirai K, Witschi H and Cote MG. Mitochondrial injury of pulmonary alveolar epithelial cells in acute paraquat intoxication. Exp. Mol. Pathol. 1985; 43: 253–259.

    Article  Google Scholar 

  7. Hirai K, Ikeda K and Wang G. Paraquat damage of rat liver mitochondria by superoxide production depends on extramitochondrial NADH. Toxicology 1992; 72: 1–16.

    Article  PubMed  CAS  Google Scholar 

  8. Shimada H, Hirai K, Simamura E and Pan J. Mitochondrial NADH-quinone oxidoreductase of the outer membrane is responsible for paraquat cytotoxicity in rat livers. Arch. Biochem. Biophys. 1998; 351: 75–81.

    Article  PubMed  CAS  Google Scholar 

  9. Thakar JH and Hassan MN. Effects of 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP), cyperquat (MPP+) and paraquat on isolated mitochondria from rat striatum, cortex and liver. Life Sci. 1988; 43: 143–149.

    Article  PubMed  CAS  Google Scholar 

  10. Molck AM and Friis C. The cytotoxic effect of paraquat to isolated renal proximal tubular segments from rabbits. Toxicology 1997; 122: 123–132.

    Article  PubMed  CAS  Google Scholar 

  11. Blaszczynski M, Litwinska J, Zaborowska D and Bilinski T. The role of respiratory chain in paraquat toxicity in yeast. Acta. Microbiol. Pol. 1985; 34: 243–254.

    PubMed  CAS  Google Scholar 

  12. Sata T, Takeshige K, Takayanagi R and Minakami S. Lipid peroxidation by bovine heart submitochondrial particles stimulated by 1,1′-dimethyl-4,4′-bipyridylium dichloride (paraquat). Biochem. Pharmacol. 1983; 32: 13–19.

    Article  PubMed  CAS  Google Scholar 

  13. Hasegawa E, Kang D, Sakamoto K, Mitsumoto A, Nagano T, Minakami S and Takeshige K. A dual effect of 1-methyl-4-phenylpyridinium (MPP+)-analogs on the respiratory chain of bovine heart mitochondria. Arch. Biochem. Biophys. 1997; 337: 69–74.

    Article  CAS  Google Scholar 

  14. Fukushima T, Yamada K, Isobe A, Shiwaku K and Yamane Y. Mechanism of cytotoxicity of paraquat: I. NADH oxidation and paraquat radical formation via complex 1. Exp. Toxic. Pathol. 1993; 45: 345–349.

    CAS  Google Scholar 

  15. Fukushima T, Tawara T, Isobe A, Hojo N, Shiwaku K and Yamane Y. Radical formation site of cerebral complex 1 and Parkinson’s disease. J. Neurosci. Res. 1995; 42: 385–390.

    Article  PubMed  CAS  Google Scholar 

  16. Fukushima T, Yamada K, Hojo N, Isobe A, Shiwaku K and Yamane Y. Mechanism of cytotoxicity of paraquat: III. The effect of acute paraquat exposure on the electron transport system in rat mitochondria. Exp. Toxic. Pathol. 1994; 46: 437–441.

    CAS  Google Scholar 

  17. Tawara T, Fukushima T, Hojo N, Isobe A, Shiwaku K, Setogawa T and Yamane Y. Effects of paraquat on mitochondrial electron transport system and catecholamine contents in rat brain. Arch. Toxicol. 1996; 70: 585–589.

    Article  PubMed  CAS  Google Scholar 

  18. Tomita M. Comparison of one-electron reduction activity against the bipyridylium herbicides, paraquat and diquat, in microsomal and mitochondrial fractions of liver, lung and kidney (in vitro). Biochem. Pharmacol. 1991; 42: 303–309.

    Article  PubMed  CAS  Google Scholar 

  19. Yamada K and Fukushima T. Mechanism of cytotoxicity of paraquat: II. Organ specificity of paraquat-stimulated lipid peroxidation in the inner membrane of mitochondria. Exp. Toxic. Pathol. 1993; 45: 375–380.

    CAS  Google Scholar 

  20. Evans MV, Turton HE, Grant CM and Dawes IW. Toxicity of linoleic acid hydroperoxide to Saccharomyces cerevisiae: involvement of a respiration-related process for maximal sensitivity and adaptive response. J. Bacteriol. 1998; 180: 483–490.

    PubMed  CAS  Google Scholar 

  21. Fabisiak JP, Kagan VE, Tyurina YY, Tyurin VA and Lazo JS. Paraquat-induced phosphatidylserine oxidation and apoptosis are independent of activation of PLA2. Am. J. Physiol. 1998; 274: L793–802.

    PubMed  CAS  Google Scholar 

  22. Davies KJ, Delsignore ME and Lin SW. Protein damage and degradation by oxygen radicals. II. Modification of amino acids. J. Biol. Chem. 1987; 262: 9902–9907.

    PubMed  CAS  Google Scholar 

  23. Davies KJ and Delsignore ME. Protein damage and degradation by oxygen radicals. III. Modification of secondary and tertiary structure. J. Biol. Chem. 1987; 262: 9908–9913.

    PubMed  CAS  Google Scholar 

  24. Narabayashi H, Takeshige K and Minakami S. Alteration of innermembrane components and damage to electron-transfer activities of bovine heart submitochondrial particles induced by NADPH-dependent lipid peroxidation. Biochem. J. 1982; 202: 97–105.

    PubMed  CAS  Google Scholar 

  25. Said SI, Berisha HI and Pakbaz H. Excitotoxicity in the lung: N-methyl-D-aspartate-induced, nitric oxide-dependent, pulmonary edema is attenuated by vasoactive intestinal peptide and by inhibitors of poly(ADP-ribose) polymerase. Proc. Natl. Acad. Sci. USA 1996; 93: 4688–4692.

    Article  PubMed  CAS  Google Scholar 

  26. Said SI, Pakbaz H, Berisha HI and Raza S. NMDA receptor activation: critical role in oxidant tissue injury. Free Radic. Biol. Med. 2000; 28: 1300–1302.

    Article  PubMed  CAS  Google Scholar 

  27. Berisha HI, Pakbaz H, Absood A and Said SI. Nitric oxide as a mediator of oxidant lung injury due to paraquat. Proc. Natl. Acad. Sci. USA 1994; 91: 7445–7449.

    Article  PubMed  CAS  Google Scholar 

  28. Day BJ, Patel M, Calavetta L, Chang LY and Stamler JS. A mechanism of paraquat toxicity involving nitric oxide synthase. Proc. Natl. Acad. Sci. USA 1999; 96: 12760–12765.

    Article  PubMed  CAS  Google Scholar 

  29. Tomita M, Okuyama T, Ishikawa T, Hidaka K and Nohno T. The role of nitric oxide in paraquat-induced cytotoxicity in the human A549 lung carcinoma cell line. Free Radic. Res. 2001; 34: 193–202.

    Article  PubMed  CAS  Google Scholar 

  30. Junod AF, Jornot L and Petersen H. Differential effects of hyperoxia and hydrogen peroxide on DNA damage, polyadenosine diphosphate-ribose polymerase activity, and nicotinamide adenine dinucleotide and adenosine triphosphate contents in cultured endothelial cells and fibroblasts. J. Cell Physiol. 1989; 140: 177–185.

    Article  PubMed  CAS  Google Scholar 

  31. Parrado J, Bougria M, Ayala A and Machado A. Induced mono-(ADP)-ribosylation of rat liver cytosolic proteins by lipid peroxidant agents. Free Radic. Biol. Med. 1999; 26: 1079–1084.

    Article  PubMed  CAS  Google Scholar 

  32. Matsubara M, Yamagami K, Kitazawa Y, Kawamoto K and Tanaka T. Paraquat causes S-phase arrest of rat liver and lung cells in vivo. Arch. Toxicol. 1996; 70: 514–518.

    Article  PubMed  CAS  Google Scholar 

  33. Melchiorri D, Del Duca C, Piccirilli S, Trombetta G, Bagetta G and Nistico G. Intrahippocampal injection of paraquat produces apoptotic cell death which is prevented by the lazaroid U74389G, in rats. Life Sci. 1998; 62: 1927–1932.

    Article  PubMed  CAS  Google Scholar 

  34. Vogt M, Bauer MK, Ferrari D and Schulze-Osthoff K. Oxidative stress and hypoxia/reoxygenation trigger CD95 (APO-1/Fas) ligand expression in microglial cells. FEBS Lett. 1998; 429: 67–72.

    Article  PubMed  CAS  Google Scholar 

  35. Chun HS, Gibson GE, DeGiorgio LA, Zhang H, Kidd VJ and Son JH. Dopaminergic cell death induced by MPP(+), oxidant and specific neurotoxicants shares the common molecular mechanism. J. Neurochem. 2001; 76: 1010–1021.

    Article  PubMed  CAS  Google Scholar 

  36. Fabisiak JP, Kagan VE, Ritov VB, Johnson DE and Lazo JS. Bcl-2 inhibits selective oxidation and externalization of phosphatidylserine during paraquat-induced apoptosis. Am. J. Physiol. 1997; 272: C675-C684.

    PubMed  CAS  Google Scholar 

  37. Cappelletti G, Maggioni MG and Maci R. Apoptosis in human lung epithelial cells: triggering by paraquat and modulation by antioxidants. Cell Biol. Int. 1998; 22: 671–678.

    Article  PubMed  CAS  Google Scholar 

  38. Li X and Sun AY. Paraquat induced activation of transcription factor AP-1 and apoptosis in PC12 cells. J. Neural. Transm. 1999; 106: 1–21.

    Article  PubMed  CAS  Google Scholar 

  39. Franek WR, Horowitz S, Stansberry L, Kazzaz JA, Koo HC, Li Y, Arita Y, Davis JM, Mantell AS, Scott W and Mantell LL. Hyperoxia inhibits oxidant-induced apoptosis in lung epithelial cells. J. Biol. Chem. 2001; 276: 569–575.

    Article  PubMed  CAS  Google Scholar 

  40. Uhal BD, Joshi I, True AL, Mundle S, Raza A, Pardo A and Selman M. Fibroblasts isolated after fibrotic lung injury induce apoptosis of alveolar epithelial cells in vitro. Am. J. Physiol. 1995; 269: L819–828.

    PubMed  CAS  Google Scholar 

  41. Kowald A. The mitochondrial theory of aging. Biol. Signals Recept. 2001; 10: 162–175.

    Article  PubMed  CAS  Google Scholar 

  42. Sayre LM, Smith MA and Perry G. Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr. Med. Chem. 2001; 8: 721–738.

    PubMed  CAS  Google Scholar 

  43. Takeyama N, Matsuo N and Tanaka T. Oxidative damage to mitochondria is mediated by the Ca2+-dependent inner-membrane permeability transition. Biochem. J. 1993; 294: 719–725.

    PubMed  CAS  Google Scholar 

  44. Costantini P, Petronilli V, Colonna R and Bernardi P. On the effect of paraquat on isolated mitochondria. Evidence that paraquat causes opening of the cyclosporin A-sensitive permeability transition pore synergistically with nitric oxide. Toxicology 1995; 99: 77–88.

    Article  PubMed  CAS  Google Scholar 

  45. Forman HJ, Nelson J and Fisher AB. Rat alveolar macrophages require NADPH for superoxide production in the respiratory burst. Effect of NADPH depletion by paraquat. J. Biol. Chem. 1980; 255: 9879–9883.

    PubMed  CAS  Google Scholar 

  46. Keeling PL and Smith LL. Relevance of NADPH depletion and mixed disulphide formation in rat lung to the mechanism of cell damage following paraquat administration. Biochem. Pharmacol. 1982; 31: 3243–3249.

    Article  PubMed  CAS  Google Scholar 

  47. Nagata S, Gunther H, Bader J and Simon H. Mitochondria catalyze the reduction of NAD by reduced methylviologen. FEBS Lett. 1987; 210: 66–70.

    Article  PubMed  CAS  Google Scholar 

  48. Milzani A, Dalledonne I, Vailati G and Colombo R. Paraquat induces actin assmbly in depolymerizing cinditions. FASEB J. 1997; 11: 261–270.

    PubMed  CAS  Google Scholar 

  49. Schmuck G, Ahr HJ and Schluter G. Rat cortical neuron cultures: an in vitro model for differentiating mechanisms of chemically induced neurotoxicity. In Vitr. Mol. Toxicol. 2000; 13: 37–50.

    PubMed  CAS  Google Scholar 

  50. Wright G, Reichenbecher V, Green T, Wright GL and Wang S. Paraquat inhibits the processing of human manganese-dependent superoxide dismutase by SF-9 insect cell mitochondria. Exp. Cell Res. 1997; 234: 78–84.

    Article  PubMed  CAS  Google Scholar 

  51. Huang TT, Yasunami M, Carlson EJ, Gillespie AM, Reaume AG, Hoffman EK, Chan PH, Scott R and Epstein CJ. Superoxide-mediated cytotoxicity in superoxide dismutase-deficient fetal fibroblasts. Arch. Biochem. Biophys. 1997; 344: 424–432.

    Article  PubMed  CAS  Google Scholar 

  52. Kramer K, Rademaker B, Rozendal WH, Timmerman H and Bast A. Influence of lipid peroxidation on beta-adrenoceptors. FEBS Lett. 1986; 198: 80–84.

    Article  PubMed  CAS  Google Scholar 

  53. Situnayake RD, Crump BJ, Thurnham DI, Davies JA and Davis M. Evidence for lipid peroxidation in man following paraquat ingestion. Hum. Toxicol. 1987; 6: 94–98.

    PubMed  CAS  Google Scholar 

  54. Watanabe N, Shiki Y, Morisaki N, Saito Y and Yoshida S. Cytotoxic effects of paraquat and inhibition of them by vitamin E. Biochim. Biophys. Acta. 1986; 883: 420–425.

    PubMed  CAS  Google Scholar 

  55. Autor AP. Reduction of paraquat by superoxide dismutase. Life Sci. 1974; 14: 1309–1319.

    Article  PubMed  CAS  Google Scholar 

  56. St. Clair DK, Oberley TD and Ho YS. Overproduction of human Mn-superoxide dismutase modulates paraquat-mediated toxicity in mammalian cells. FEBS Lett. 1991; 293: 199–203.

    Article  PubMed  CAS  Google Scholar 

  57. Raj HG, Sharma RK, Garg BS, Parmar VS, Jain SC, Goel S, Tyagi YK, Singh A, Olsen CE and Wengel J. Mechanism of biochemical action of substituted 4-methylbenzopyran-2-ones. Part 3: A novel mechanism for the inhibition of biological membrane lipid peroxidation by dioxygenated 4-methylcoumarins mediated by the formation of a stable ADP-Fe-inhibitor mixed ligand complex. Bioorg. Med. Chem. 1998; 6: 2205–2212.

    Article  PubMed  CAS  Google Scholar 

  58. Palmeira CM, Moreno A and Madeira VMC. Mitochondrial bioenergetics is affected by the herbicide paraquat. Biochim. Biophys. Acta. 1995; 1229: 187–192.

    Article  PubMed  Google Scholar 

  59. Allen RG, Farmer KJ, Newton RK and Sohal RS. Effects of paraquat administration on longevity, oxygen consumption, lipid peroxidation, superoxide dismutase, catalase, glutathione reductase, inorganic peroxides and glutathione in the adult housefly. Comp. Biochem. Physiol. Part C 1984; 78: 283–288.

    Article  CAS  Google Scholar 

  60. Yonemitsu K, Nagano M, Sumi M, Ohta J, Egawa H and Futatsuka M. Effects of ascorbic acid and SOD on mortality rates of paraquat-poisoned mice. J. Jpn. Assoc. Rural. Med. 1986; 35: 67–71. (in Japanese)

    Google Scholar 

  61. Barabas K, Serenyi P, Selypes A and Matkovics B. The effect of paraquat lung on mononuclear cells. Exp. Pathol. 1988; 34: 115–118.

    PubMed  CAS  Google Scholar 

  62. Ogata T and Manabe S. Correlation between lipid peroxidation and morphological manifestation of paraquat-induced lung injury in rats. Arch. Toxicol. 1990; 64: 7–13.

    Article  PubMed  CAS  Google Scholar 

  63. Tomita M, Okuyama T, Watanabe S and Kawai S. Free malondialdehyde levels in the urine of rats intoxicated with paraquat. Arch Toxicol. 1990; 64: 590–593.

    Article  PubMed  CAS  Google Scholar 

  64. Brown OR, Heitkamp M and Song CS. Niacin Reduces Paraquat Toxicity in Rats. Science 1981; 212: 1510–1512.

    Article  PubMed  CAS  Google Scholar 

  65. Fukushima T, Gao T, Tawara T, Hojo N, Isobe A and Yamane Y. Inhibitory effect of nicotinamide to paraquat toxicity and the reaction site on complex 1. Arch. Toxicol. 1997; 71: 633–637.

    Article  PubMed  CAS  Google Scholar 

  66. Eisenman A, Armali Z, Raikhlin-Eisenkraft B, Bentur L, Bentur Y, Guralnik L and Enat R. Nitric oxide inhalation for paraquat-induced lung injury. J. Toxicol. Clin. Toxicol. 1998; 36: 575–584.

    PubMed  CAS  Google Scholar 

  67. Hong SY, Hwang KY, Lee EY, Eun SW, Cho SR, Han CS, Park YH and Chang SK. Effect of vitamin C on plasma total antioxidant status in patients with paraquat intoxication. Toxicol. Lett. 2002; 126: 51–59.

    Article  PubMed  CAS  Google Scholar 

  68. Hara H, Yoneyama H, Tanabe J and Matsushima T. Observations of the fibrosing process in paraquat lung injury by chest X-ray and CT. Nihon Kyobu Shikkan Gakkai Zasshi 1991; 29: 638–643.

    PubMed  CAS  Google Scholar 

  69. Hudson M, Patel SB, Ewen SW, Smith CC and Friend JA. Paraquat induced pulmonary fibrosis in three survivors. Thorax 1991; 46: 201–204.

    Article  PubMed  CAS  Google Scholar 

  70. Kaetsu A, Fukushima T, Inoue S, Lim H and Moriyama M. Role of heat shock protein 60 (HSP60) on paraquat intoxication. J. Appl. Toxicol. 2001; 21: 425–430.

    Article  PubMed  CAS  Google Scholar 

  71. Nakamura T, Ushiyama C, Shimada N, Hayashi K, Ebihara I, Suzuki M and Koide H. Changes in concentrations of type IV collagen and tissue inhibitor of metalloproteinase-1 in patients with paraquat poisoning. J. Appl. Toxicol. 2001; 21: 445–447.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuhito Fukushima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukushima, T., Tanaka, K., Lim, H. et al. Mechanism of cytotoxicity of paraquat. Environ Health Prev Med 7, 89–94 (2002). https://doi.org/10.1265/ehpm.2002.89

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1265/ehpm.2002.89

Key words

Navigation