Skip to main content
Log in

Melanoma: Advances in Targeted Therapy and Molecular Markers

  • Melanomas
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Purpose and Design

In recent years, there have been dramatic improvements in the diagnosis and treatment of patients with melanoma. The development of molecular markers and associated targeted therapies have given new hope to subsets of patients with advanced disease. Here we discuss the most important advances in molecular targeted therapy and how these developments are likely to affect the practice of the clinical surgeon.

Results and Conclusions

Germ-line and somatic mutations are common in melanoma and provide prognostic information that can now be harnessed to provide a more personalized approach to cancer treatment. BRAF mutation at the V600 position is the most commonly identified mutation in patients with melanoma. Treatment with targeted inhibitors in patients with BRAF-mutant melanoma has afforded dramatic responses in about half of selected patients. Unfortunately, disease control is not durable and recurrences are common. We predict an increasing role for the surgeon in the multidisciplinary treatment of patients with metastatic disease, as well as a role for molecular profiling in patients with high-risk early stage disease. Further, we are only beginning to understand the prognostic significance of various gene mutations in patients with melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Sidransky D. Emerging molecular markers of cancer. Nat Rev Cancer. 2002;2:210–9.

    Article  CAS  PubMed  Google Scholar 

  2. Tsao H, Chin L, Garraway LA, et al. Melanoma: from mutations to medicine. Gene Dev. 2012;26:1131–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Ward KA, Lazovich D, Hordinsky MK, et al. Germline melanoma susceptibility and prognostic genes: a review of the literature. J Am Acad Derm. 2012;67:1055–67.

    Article  PubMed  Google Scholar 

  4. Yeh I, Bastian BC. Genome-wide associations; studies for melanoma and nevi. Pigment Cell Melanoma Res. 2009;22:527–8.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Robinson S, Dixon S, Augus S, et al. Protection against UVR involved MC1R-mediated non-pigmentary and pigmentary mechanisms in vivo. J Invest Dermatol. 2010;130:1904–13.

    Article  CAS  PubMed  Google Scholar 

  6. Goldstein A, Chan M, Harland M, et al. Features associated with germline CDK2NA mutations: a GenoMEL study of melanoma-prone families from three continents. J Med Genet. 2007;22:99–106.

    Google Scholar 

  7. Gabree M, Patel D, Rodgers L. Clinical applications of melanoma genetics, 2014. Curr Treat Options Oncol. 2014;15:336–50.

    Article  PubMed  Google Scholar 

  8. Berger MF, Hodis E, Heffernan TP, et al. Melanoma genome sequencing reveals frequent PREX2 mutations. Nature. 2012;485:502–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Hodis FS, Watson IR, Kryukov, et al. A landscape of driver mutations in melanoma. Cell. 2013;150:251–63.

    Article  Google Scholar 

  10. Krauthammer M, Kong Y, Ha BH, et al. Exome sequencing identifies recurrent somatic RA1 mutations in melanoma. Nat Genet. 2012;44:1004–14.

    Article  Google Scholar 

  11. Hawryluk EB, Tsao H. Melanoma: clinical features and genomic insights. Cold Spring Harb Perspect Med. 2014;4:a015388.

    Article  PubMed  Google Scholar 

  12. Wilson MA, Nathanson KL. Molecular testing in melanoma. Cancer J. 2012;18:117–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Hurst CD, Zuiverloon TC, Hafner C, et al. A SNaPshot assay for the rapid and simple detection of four common hotspot codon mutations in the PIK3CA gene. BMC Res Notes. 2009;2:66.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Ross JS, Cronin M. Whole cancer genome sequencing by next-generation methods. Am J Clin Pathol. 2011;136:527–39.

    Article  CAS  PubMed  Google Scholar 

  15. Boland GM, Meric‐Bernstam F (2015). The role of surgeons in building a personalized medicine program. J Surg Oncol. 111(1), 3–8.

    Article  PubMed  Google Scholar 

  16. Meric-Bernstam F Frahangfar C, Mendelsohn J, et al. Building a personalized medicine infrastructure at a major cancer center. J Clin Oncol. 2013;31:1849–57.

    Article  PubMed  Google Scholar 

  17. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54.

    Article  CAS  PubMed  Google Scholar 

  18. Gray-Schopfer V, Wellbrook C, Marsais R. Melanoma biology and new targeted therapy. Nature. 2007;445:851–7.

    Article  CAS  PubMed  Google Scholar 

  19. Siroy AE, Boland GM, Milton DR, et al. (2015). Beyond BRAFV600: clinical mutation panel testing by next-generation sequencing in advanced melanoma. J Invest Dermatol. 135(2), 508–515.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Hauschild A, Grob JJ, Demidov LV, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre open-label, phase-3 randomised controlled trial. Lancet. 2012;380:358–65.

    Article  CAS  PubMed  Google Scholar 

  21. Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Sosman JA, Kim KB, Schuchter L, et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med. 2012;366:707–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Rubinstein JC, Sznol M, Pavlick AC, et al. Incidence of the V600 K mutation among melanoma patients with BRAF mutations, and potential therapeutic response to the specific BRAF inhibitor PLX4032. J Transl Med. 2010;8:67.

    Article  PubMed Central  PubMed  Google Scholar 

  24. McArthur GA, Chapman PB, Robert C, et al. safety and efficacy of vemurafenib in BRAFV600E and BRAF V600 K mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. Lancet Oncol. 2014;15:323–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Falchook GS, Long GV, Kurzrock R, et al. Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumors: a phase 1 dose escalation trial. Lancet. 2012;379:1893–901.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Long GV, Trefzer U, Davies MA, et al. Dabrafenib in patients with Val600Glu or Val600Lys BRAF-mutant melanoma metastatic to the brain (BREAK-MB): a multicenter open-label, phase 2 trial. Lancet Oncol. 2012;13:1087–95.

    Article  CAS  PubMed  Google Scholar 

  27. Bucheit AD, Syklawer E, Jakob JA, et al. Clinical characteristics and outcomes with specific BRAF and NRAS mutations in patients with metastatic melanoma. Cancer. 2013;119:3821–9.

    Article  CAS  PubMed  Google Scholar 

  28. Menzies AM, Haydu LE, Visintin L, et al. Distinguishing clinicopathologic features of patients with V600E and V600 K BRAF-mutant metastatic melanoma. Clin Cancer Res. 2012;18:3242–9.

    Article  CAS  PubMed  Google Scholar 

  29. Fedorenko IV, Paraiso KH, Smalley KS. Acquired and intrinsic BRAF inhibitor resistance in BRAF V600E mutant melanoma. Biochem Pharmacol. 2011;82:201–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Flaherty KT, Robert C, Hersey, P, et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med. 2012;367:107–14.

    Article  CAS  PubMed  Google Scholar 

  31. Robert C, Karaszewska B, Schachter J, et al. Improved survival in melanoma with combined dabrafenib and trametinib. N Engl J Med. 2015;372:30−9. doi:10.1056/NEJMoa1412690.

    Article  PubMed  Google Scholar 

  32. Long GV, Stroyakovsky D, Gogas H, et al. Combined BRAF and MEK inhibition versus BRAF alone in melanoma. N Engl J Med. 2014;371:1877–88.

    Article  PubMed  Google Scholar 

  33. Ribas A, Gonzalez R, Pavlick A, et al. (2014). Combination of vemurafenib and cobimetinib in patients with advanced BRAF V600-mutated melanoma: a phase 1b study. Lancet Oncol. 15(9), 954-965.

    Article  CAS  PubMed  Google Scholar 

  34. Devitt B, Liu W, Salemi R, et al. Clinical outcome and pathological features associated with NRAS mutation in cutaneous melanoma. Pigment Cell Melanoma Res. 2011;24:666–72.

    Article  CAS  PubMed  Google Scholar 

  35. Goel VK, Lazaar AJ, Warneke CL, et al. Examination of mutations in BRAF, NRAS, and PTEN in primary cutaneous melanoma. J Invest Dermatol. 2006;126:154–60.

    Article  CAS  PubMed  Google Scholar 

  36. Ascierto PA, Schadendorf D, Berking C, et al. MEK162 for patients with advanced melanoma harbouring NRAS or Val600BRAF mutations: a non-randomised, open-label phase 2 study. Lancet Oncol. 2013;14:249–56.

    Article  CAS  PubMed  Google Scholar 

  37. Kwong LN, Costello JC, Liu H, et al. Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma. Nat Med. 2012;18:1503–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Sosman JA, Kittaneh M, Lolkema MPJK, et al. A phase 1b/2 study of LEE011 in combination with binimetinib (MEK 162) in patients with NRAS-mutant melanoma: early encouraging clinical activity (abstract). J Clin Oncol. 2014;32(5 suppl):9009.

    Google Scholar 

  39. Cancer Genome Atlas. http://www.cancergenome.nih.gov.

  40. Maertens O, Johnson B, Hollstein P, et al. Elucidating distinct roles for NF1 in melanomagenesis. Cancer Discov. 2013;3:338–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Nissan MH, Pratilas CA, Jones AM, et al. Loss of NF1 in cutaneous melanoma is associated with RAS activation and MEK dependence. Cancer Res. 2014;74:2340–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Stahl JM, Sharma A, Cheung M, et al. Deregulated Akt3 activity promotes development of malignant melanoma. Cancer Res. 2004;64:7002–10.

    Article  CAS  PubMed  Google Scholar 

  43. Birck A, Ahrenkiel V, Zeuthen J, et al. Mutation and allelic loss of PTEN/MMAC1 gene in primary and metastatic melanoma biopsies. J Invest Dermatol. 2000;114:277–80.

    Article  CAS  PubMed  Google Scholar 

  44. Kwong LN, Davies MA. Navigating the therapeutic complexity of PI3K inhibition in melanoma. Clin Cancer Res. 2013;19:5310–9.

    Article  CAS  PubMed  Google Scholar 

  45. Sanchez-Hernandez I, Baquero P, Calleros L, et al. Dual inhibition of v600BRAF and PI3K/AKT/mTOR pathway cooperates to induce apoptosis in melanoma cells through a MEK independent mechanism. Cancer Lett. 2012;314:244–55.

    Article  CAS  PubMed  Google Scholar 

  46. Margolin KA, Moon J, Flaherty LE, Lao CD, Akerley WL, Othus M, et al. (2012). Randomized phase II trial of sorafenib with temsirolimus or tipifarnib in untreated metastatic melanoma (S0438). Clin Cancer Res. 18(4), 1129–1137.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Dronca RS, Allred JB, Perez DG, et al. Phase II study of temozolomide and everolimus therapy for metastatic melanoma: a North Central Cancer Treatment Group study, NO675. Am J Clin Oncol. 2014;37(4):369–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Curtin JA, Busam KJ, Francone TD, et al. Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol. 2006;24:4340–6.

    Article  CAS  PubMed  Google Scholar 

  49. Woodman SE, Davies MA. Targeting KIT in melanoma: a paradigm of molecular medicine and targeted therapeutics. Biochem Pharmacol. 2010;80:568–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Lutzky J, Bauer J, Bastian BC, et al. Dose-dependent, complete response to imatinib of a metastatic mucosal melanoma with a K642E KIT mutation. Pigment Cell Melanoma Res. 2008;21:492–3.

    Article  PubMed  Google Scholar 

  51. Quintas-Cardama A, Lazar AJ, Woodman SE, et al. Complete response of stage IV anal mucosal melanoma expressing KIT Val560Asp to the multikinase inhibitor sorafenib. Nat Clin Pract Oncol. 2008;5:737–40.

    Article  CAS  PubMed  Google Scholar 

  52. Viros A, Sanchez-Laorden B, Pedersen M, et al. Ultraviolet radiation accelerates BRAF-driven melanomagenesis by targeting TP53. Nature. 2014;511:478–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Essner R, Kuo CT, Wang H, et al. Prognostic implications of p53 overexpression in cutaneous melanoma from sun-exposed and nonexposed sites. Cancer. 1998;82:309–16.

    Article  CAS  PubMed  Google Scholar 

  54. Hoffman TK, Sonkoly E, Hauser U, et al. Alterations in the p53 pathway and their association with radio- and chemosensitivity in head and neck squamous cell carcinoma. Oral Oncol. 2008;44:1100–9.

    Article  Google Scholar 

  55. Poeta ML, Manola J, Goldwasser MA, et al. TP53 mutations and survival in squamous-cell carcinoma of the head and neck. N Engl J Med. 2007;357:2552–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Kerkar SP, Restifo NP. Cellular constituents of immune escape within the tumor micro-environment. Cancer Res. 2012;72:3125–30.

    Article  CAS  PubMed  Google Scholar 

  57. Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Wolchock JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369:122–33.

    Article  Google Scholar 

  59. Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372:320–30.

    Article  CAS  PubMed  Google Scholar 

  60. Snyder A, Makaroc V, Merghoub T, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371:2189–99.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Hu-Lieskovan S, Robert L, Moreno BH, et al. Combining targeted therapy with immunotherapy in BRAF-mutant melanoma: promise and challenges. J Clin Oncol. 2014;32(21):2248–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Ribas A, Hodi F, Callahan M, et al. Hepatotoxicity with combination of vemurafenib and ipilimumab. N Engl J Med. 2013;368:1365–6.

    Article  CAS  PubMed  Google Scholar 

  63. Puzanov I, Callahan MK, Linette GP, et al. Phase 1 study of BRAF inhibitor dabrafenib with or without the MEK inhibitor trametinib in combination with ipilimumab for V600E/K mutation-positive unresectable or metastatic melanoma (abstract). J Clin Oncol. 2014;32(5 suppl):2511.

    Google Scholar 

  64. Massachusetts General Hospital Cancer Center. 2013. http://www.massgeneral.org/cancer/TrialDetails.aspx?p13-606&diseaseMelanoma&nctNCT02027961.

  65. Menzies AM, Long GV. Recent advances in melanoma systemic therapy. BRAF inhibitors, CTLA4 antibodies and beyond. Eur J Cancer. 2013;49:3229–41.

    Article  CAS  PubMed  Google Scholar 

  66. Balch CM, Gershenwald JE, Soong SJ, et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol. 2009;27:6199–206.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Eggermont AM, Chiaron-Sileni, V, Grob JJ, et al. Ipilimumab versus placebo after complete resection of stage III melanoma: initial efficacy and safety results from the EORTC 18071 phase III trial (abstract). J Clin Oncol. 2014;32(5 suppl). http://meetinglibrary.asco.org/print/1738628.

  68. Hsueh EC, Morton DL. Antigen-based immunotherapy of melanoma: canvaxin therapeutic polyvalent cancer vaccine. Semin Cancer Biol. 2003;13:401–7.

    Article  CAS  PubMed  Google Scholar 

  69. Morton DL, Mozzillo N, Thompson JF, et al. An international, randomized, phase III trial of bacillus Calmette-Guerin plus allogeneic melanoma vaccine (MCV) or placebo after complete resection of melanoma metastatic to regional or distant sites. J Clin Oncol. 2007;25:8508.

    Google Scholar 

  70. Dannul J, Haley NR, Archer G, et al. Melanoma immunotherapy using mature DCs expressing the constitutive proteasome. J Clin Invest. 2013;123:3135–45.

    Article  Google Scholar 

Download references

Disclosure

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genevieve M. Boland MD, PhD.

Additional information

Acknowledgement This educational review series, “Genomic Markers in the Multidisciplinary Treatment of Cancer” is supported by an independent educational grant from Genomic Health, Inc. The Society of Surgical Oncology offers CME/MOC for this educational review series. Visit moc.surgonc.org for additional information. Annals of Surgical Oncology educational reviews represent the journal’s commitment to the peer review and publication of high quality research necessary to define the safety, toxicity, or effectiveness of potential therapeutic agents compared with conventional alternatives.

This Educational Review Series may include information regarding the use of medications that may be outside the approved labeling for these products. Physicians should consult the current prescribing information for these products. Authors of Annals of Surgical Oncology educational reviews are provided at the time of article solicitation with this statement regarding off-label pharmaceutical information and research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DePeralta, D.K., Boland, G.M. Melanoma: Advances in Targeted Therapy and Molecular Markers. Ann Surg Oncol 22, 3451–3458 (2015). https://doi.org/10.1245/s10434-015-4702-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-015-4702-1

Keywords

Navigation