Skip to main content

Advertisement

Log in

Significance of Lgr5+ve Cancer Stem Cells in the Colon and Rectum

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Although recent studies show that leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5)+ve cells targeted by Wnt drive self-renewal in the skin and gastrointestinal organs, the clinicopathological significance of Lgr5+ve cancer stem cells (CSCs) of the colon remains to be elucidated.

Experimental Design

We studied the Wnt-targeted Lgr5 pathway in colorectal cancer (CRC). The expression of LGR5, c-MYC, p21CIP1/WAF1/CDKN1A, glutaminase (GLS), and miRs-23a and -23b (that target LGR5 and GLS) was evaluated by quantitative real-time reverse-transcription polymerase chain reaction (RT-PCR). The Lgr5 protein was evaluated by immunohistochemistry. The clinical relevance of gene expression in terms of patient survival was also evaluated.

Results

Overexpression of LGR5 was significantly associated with expression of c-MYC, p21CIP1/WAF1/CDKN1A, and GLS (p < 0.0001), and inversely associated with miR-23a/b (p < 0.05). Immunohistochemical analysis indicated that Lgr5 may be embedded in benign adenomas, localized at the tumor–host interface, and detectable over a broad area in established tumors. High level of LGR5 expression was associated with poor prognosis for CRC cancer patients (disease-free survival; p < 0.05).

Conclusions

This study supports a significant role for LGR5 in the CSC hypothesis in CRC: (1) Lgr5+ve CSCs, presumably derived from normal stem cells in colonic crypts, proliferate, and the gene is overexpressed during CRC development; (2) LGR5 expression is associated with activation of Wnt pathway, including oncogenic c-MYC and high energy production via glutaminolysis; (3) LGR5 expression may be a poor prognostic factor for CRC patients. Further study of LGR5 should contribute to the development of CSC-based cancer therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Markowitz SD, Bertagnolli MM. Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med. 2009;361:2449–60.

    Article  PubMed  CAS  Google Scholar 

  2. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.

    Article  PubMed  CAS  Google Scholar 

  3. Dick JE. Looking ahead in cancer stem cell research. Nat Biotechnol. 2009;27:44–6.

    Article  PubMed  CAS  Google Scholar 

  4. Vermeulen L, Todaro M, de Sousa Mello F, et al. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci USA. 2008;105:13427–32.

    Article  PubMed  CAS  Google Scholar 

  5. Dalerba P, Dylla SJ, Park IK, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA. 2007;104:10158–63.

    Article  PubMed  CAS  Google Scholar 

  6. Haraguchi N, Ohkuma M, Sakashita H, et al. CD133+CD44+ population efficiently enriches colon cancer initiating cells. Ann Surg Oncol. 2008;15:2927–33.

    Article  PubMed  Google Scholar 

  7. Yasuda H, Tanaka K, Saigusa S, et al. Elevated CD133, but not VEGF or EGFR, as a predictive marker of distant recurrence after preoperative chemoradiotherapy in rectal cancer. Oncol Rep. 2009;22:709–17.

    PubMed  CAS  Google Scholar 

  8. Horst D, Scheel SK, Liebmann S, et al. The cancer stem cell marker CD133 has high prognostic impact but unknown functional relevance for the metastasis of human colon cancer. J Pathol. 2009;219:427–34.

    Article  PubMed  CAS  Google Scholar 

  9. Saigusa S, Tanaka K, Toiyama Y, et al. Correlation of CD133, OCT4, and SOX2 in rectal cancer and their association with distant recurrence after chemoradiotherapy. Ann Surg Oncol. 2009;16:3488–98.

    Article  PubMed  Google Scholar 

  10. Weichert W, Denkert C, Burkhardt M, et al. Cytoplasmic CD24 expression in colorectal cancer independently correlates with shortened patient survival. Clin Cancer Res. 2005;11:6574–81.

    Article  PubMed  CAS  Google Scholar 

  11. Ahmed MA, Al-Attar A, Kim J, et al. CD24 shows early upregulation and nuclear expression but is not a prognostic marker in colorectal cancer. J Clin Pathol. 2009;62:1117–22.

    Article  PubMed  CAS  Google Scholar 

  12. Choi D, Lee HW, Hur KY, et al. Cancer stem cell markers CD133 and CD24 correlate with invasiveness and differentiation in colorectal adenocarcinoma. World J Gastroenterol. 2009;15:2258–64.

    Article  PubMed  CAS  Google Scholar 

  13. van de Wetering M, Sancho E, Verweij C, et al. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell. 2002;111:241–50.

    Article  PubMed  Google Scholar 

  14. Barker N, van Es JH, Kuipers J, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449:1003–7.

    Article  PubMed  CAS  Google Scholar 

  15. Jaks V, Barker N, Kasper M, et al. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet. 2008;40:1291–9.

    Article  PubMed  CAS  Google Scholar 

  16. Tuupanen S, Turunen M, Lehtonen R, et al. The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling. Nat Genet. 2009;41:885–90.

    Article  PubMed  CAS  Google Scholar 

  17. Haegebarth A, Clevers H. Wnt signaling, lgr5, and stem cells in the intestine and skin. Am J Pathol. 2009;174:715–21.

    Article  PubMed  CAS  Google Scholar 

  18. Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T. Migrating cancer stem cells—an integrated concept of malignant tumour progression. Nat Rev Cancer. 2005;5:744–9.

    Article  PubMed  CAS  Google Scholar 

  19. Gao P, Tchernyshyov I, Chang TC, et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009;458:762–5.

    Article  PubMed  CAS  Google Scholar 

  20. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  PubMed  CAS  Google Scholar 

  21. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105.

    Article  PubMed  CAS  Google Scholar 

  22. He L, Thomson JM, Hemann MT, et al. A microRNA polycistron as a potential human oncogene. Nature. 2005;435:828–33.

    Article  PubMed  CAS  Google Scholar 

  23. Mariadason JM, Bordonaro M, Aslam F, et al. Down-regulation of beta-catenin TCF signaling is linked to colonic epithelial cell differentiation. Cancer Res. 2001;61:3465–71.

    PubMed  CAS  Google Scholar 

  24. Conacci-Sorrell M, Simcha I, Ben-Yedidia T, et al. Autoregulation of E-cadherin expression by cadherin-cadherin interactions: the roles of beta-catenin signaling, Slug, and MAPK. J Cell Biol. 2003;163:847–57.

    Article  PubMed  CAS  Google Scholar 

  25. Wellner U, Schubert J, Burk UC, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol. 2009;11:1487–95.

    Article  PubMed  CAS  Google Scholar 

  26. Furth J, Kahn MC. The transmission of leukemia of mice with a single cells. Am J Cancer. 1937;31:276–82.

    Google Scholar 

  27. Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–8.

    Article  PubMed  CAS  Google Scholar 

  28. Bonnet D, Dick JE. Human acute leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–37.

    Article  PubMed  CAS  Google Scholar 

  29. Wulf GG, Wang RY, Kuehnle I, et al. A leukemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia. Blood. 2001;98:1166–173.

    Article  PubMed  CAS  Google Scholar 

  30. Prince ME, Sivanandan R, Kaczorowski A, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA. 2007;104:973–8.

    Google Scholar 

  31. Haraguchi N, Utsunomiya T, Inoue H, et al. Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells. 2006;24:506–13.

    Article  PubMed  CAS  Google Scholar 

  32. Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445:111–5.

    Article  PubMed  CAS  Google Scholar 

  33. O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445:106–10.

    Article  PubMed  Google Scholar 

  34. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003;100:3983–88.

    Article  PubMed  CAS  Google Scholar 

  35. Piccirillo SG, Reynolds BA, Zanetti N, et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature. 2006;444:761–5.

    Article  PubMed  CAS  Google Scholar 

  36. Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444:756–60.

    Article  PubMed  CAS  Google Scholar 

  37. Tan BT, Park CY, Ailles LE, Weissman IL. The cancer stem cell hypothesis: a work in progress. Lab Invest. 2006;86:1203–7.

    Article  PubMed  CAS  Google Scholar 

  38. Hsu SY, Liang, SG, Hsueh AJ. Characterization of two LGR genes homologous to gonadotropin and thyrotropin receptors with extracellular leucine-rich repeats and a G protein-coupled, seven-transmembrane region. Mol Endocrinol. 1998;12:1830–45.

    Article  PubMed  CAS  Google Scholar 

  39. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434:843–50.

    Article  PubMed  CAS  Google Scholar 

  40. Finch AJ, Soucek L, Junttila MR, Swigart LB, Evan GI. Acute overexpression of Myc in intestinal epithelium recapitulates some but not all the changes elicited by Wnt/beta-catenin pathway activation. Mol Cell Biol. 2009;29:5306–15.

    Article  PubMed  CAS  Google Scholar 

  41. Gordan JD, Thompson, CB, Simon MC. HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell. 2007;12:108–13.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported in part by a grant-in-aid for scientific research on Priority Areas (20012039), a grant-in-aid for scientific research (S, 21229015; C, 20590313), and a grant-in-aid for Young Scientists (B, 21791287) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Mori MD, PhD, FACS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, H., Ishii, H., Nishida, N. et al. Significance of Lgr5+ve Cancer Stem Cells in the Colon and Rectum. Ann Surg Oncol 18, 1166–1174 (2011). https://doi.org/10.1245/s10434-010-1373-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-010-1373-9

Keywords

Navigation