Skip to main content

Advertisement

Log in

Hesperetin Activates the Notch1 Signaling Cascade, Causes Apoptosis, and Induces Cellular Differentiation in Anaplastic Thyroid Cancer

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Anaplastic thyroid cancer (ATC) is characterized by very aggressive growth with undifferentiated features. Recently, it has been reported that the Notch1 signaling pathway, which affects thyrocyte proliferation and differentiation, is inactivated in ATC. However, it remains largely unknown whether using Notch1 activating compounds can be an effective therapeutic strategy in ATC. Therefore, in this study, we aimed to evaluate the drug effects of a potential Notch activator hesperetin on ATC cell.

Methods

A unique ATC cell line HTh7 was used to evaluate the drug effects of hesperetin. The Notch1 activating function and cell proliferation were evaluated. The mechanism of growth regulation was investigated by the detection of apoptotic markers. The expression levels of thyrocyte-specific genes were quantified for ATC redifferentiation.

Results

Upregulated expression of Notch1 and its downstream effectors hairy and enhancer of split 1 (Hes1) and Hes1 related with YRPW motif was observed in hesperetin-treated ATC cells. The enhanced luciferase signal also confirmed the functional activity of hesperetin-induced Notch1 signaling. Hesperetin led to a time- and dose-dependent decrease in ATC cell proliferation. The cell-growth inhibition was mainly caused by apoptosis as evidenced by increased levels of cleaved poly ADP ribose polymerase and cleaved caspase-3 as well as decreased survivin. Additionally, hesperetin induced the expression levels of thyrocyte-specific genes including thyroid transcription factor 1 (TTF1), TTF2, paired box gene 8, thyroid stimulating hormone receptor, and sodium/iodide symporter.

Conclusions

Hesperetin activates the Notch1 signaling cascade and suppresses ATC cell proliferation mainly via apoptosis. Hesperetin also induces cell redifferentiation of ATC, which could be useful clinically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Smallridge RC, Copland JA. Anaplastic thyroid carcinoma: pathogenesis and emerging therapies. Clin Oncol (R Coll Radiol.). 2010;22:486–97.

    Article  CAS  Google Scholar 

  2. Cornett WR, Sharma AK, Day TA, Richardson MS, Hoda RS, van Heerden JA, et al. Anaplastic thyroid carcinoma: an overview. Curr Oncol Rep. 2007;9:152–8.

    Article  PubMed  Google Scholar 

  3. Neff RL, Farrar WB, Kloos RT, Burman KD. Anaplastic thyroid cancer. Endocrinol Metab Clin N Am. 2008;37:525–38, xi.

    Google Scholar 

  4. Nagaiah G, Hossain A, Mooney CJ, Parmentier J, Remick SC. Anaplastic thyroid cancer: a review of epidemiology, pathogenesis, and treatment. J Oncol. 2011;2011:542358. doi:10.1155/2011/542358.

  5. Chiacchio S, Lorenzoni A, Boni G, Rubello D, Elisei R, Mariani G. Anaplastic thyroid cancer: prevalence, diagnosis and treatment. Minerva Endocrinol. 2008;33:341–57.

    CAS  PubMed  Google Scholar 

  6. Zarebczan B, Chen H. Multi-targeted approach in the treatment of thyroid cancer. Minerva Chir. 2010;65:59–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Pinchot SN, Sippel RS, Chen H. Multi-targeted approach in the treatment of thyroid cancer. Ther Clin Risk Manag. 2008;4:935–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science. 1999;284:770–6.

    Article  CAS  PubMed  Google Scholar 

  9. Kunnimalaiyaan M, Chen H. Tumor suppressor role of Notch-1 signaling in neuroendocrine tumors. Oncologist. 2007;12:535–42.

    Article  CAS  PubMed  Google Scholar 

  10. Xiao X, Ning L, Chen H. Notch1 mediates growth suppression of papillary and follicular thyroid cancer cells by histone deacetylase inhibitors. Mol Cancer Ther. 2009;8:350–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Ferretti E, Tosi E, Po A, Scipioni A, Morisi R, Espinola MS, et al. Notch signaling is involved in expression of thyrocyte differentiation markers and is down-regulated in thyroid tumors. J Clin Endocrinol Metab. 2008;93:4080–7.

    Article  CAS  PubMed  Google Scholar 

  12. Pinchot SN, Jaskula-Sztul R, Ning L, Peters NR, Cook MR, Kunnimalaiyaan M, et al. Identification and validation of Notch pathway activating compounds through a novel high-throughput screening method. Cancer. 2011;117:1386–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. So FV, Guthrie N, Chambers AF, Moussa M, Carroll KK. Inhibition of human breast cancer cell proliferation and delay of mammary tumorigenesis by flavonoids and citrus juices. Nutr Cancer. 1996;26:167–81.

    Article  CAS  PubMed  Google Scholar 

  14. Sivagami G, Vinothkumar R, Preethy CP, Riyasdeen A, Akbarsha MA, Menon VP, et al. Role of hesperetin (a natural flavonoid) and its analogue on apoptosis in HT-29 human colon adenocarcinoma cell line—a comparative study. Food Chem Toxicol. 2012;50:660–71.

    Article  CAS  PubMed  Google Scholar 

  15. Lentini A, Forni C, Provenzano B, Beninati S. Enhancement of transglutaminase activity and polyamine depletion in B16-F10 melanoma cells by flavonoids naringenin and hesperitin correlate to reduction of the in vivo metastatic potential. Amino Acids. 2007;32:95–100.

    Article  CAS  PubMed  Google Scholar 

  16. Patil JR, Chidambara Murthy KN, Jayaprakasha GK, Chetti MB, Patil BS. Bioactive compounds from Mexican lime (Citrus aurantifolia) juice induce apoptosis in human pancreatic cells. J Agric Food Chem. 2009;57:10933–42.

    Article  CAS  PubMed  Google Scholar 

  17. Schweppe RE, Klopper JP, Korch C, Pugazhenthi U, Benezra M, Knauf JA, et al. Deoxyribonucleic acid profiling analysis of 40 human thyroid cancer cell lines reveals cross-contamination resulting in cell line redundancy and misidentification. J Clin Endocrinol Metab. 2008;93:4331–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Kunnimalaiyaan M, Ndiaye M, Chen H. Apoptosis-mediated medullary thyroid cancer growth suppression by the PI3K inhibitor LY294002. Surgery. 2006;140:1009–14; discussion 1014–5.

    Google Scholar 

  19. Yang E, Korsmeyer SJ. Molecular thanatopsis: a discourse on the BCL2 family and cell death. Blood. 1996;88:386–401.

    CAS  PubMed  Google Scholar 

  20. Katoh M. Integrative genomic analyses on HES/HEY family: Notch-independent HES1, HES3 transcription in undifferentiated ES cells, and Notch-dependent HES1, HES5, HEY1, HEY2, HEYL transcription in fetal tissues, adult tissues, or cancer. Int J Oncol. 2007;31:461–6.

    CAS  PubMed  Google Scholar 

  21. Yu XM, Jaskula-Sztul R, Ahmed K, Harrison AD, Kunnimalaiyaan M, Chen H. Resveratrol induces differentiation markers expression in anaplastic thyroid carcinoma via activation of Notch1 signaling and suppresses cell growth. Mol Cancer Ther. 2013;12:1276–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Sriuranpong V, Borges MW, Ravi RK, Arnold DR, Nelkin BD, Baylin SB. Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Res. 2001;61:3200–5.

    CAS  PubMed  Google Scholar 

  23. Kunnimalaiyaan M, Vaccaro AM, Ndiaye MA, Chen H. Overexpression of the NOTCH1 intracellular domain inhibits cell proliferation and alters the neuroendocrine phenotype of medullary thyroid cancer cells. J Biol Chem. 2006;281:39819–30.

    Article  CAS  PubMed  Google Scholar 

  24. Nakakura EK, Sriuranpong VR, Kunnimalaiyaan M, Hsiao EC, Schuebel KE, Borges MW, et al. Regulation of neuroendocrine differentiation in gastrointestinal carcinoid tumor cells by Notch signaling. J Clin Endocrinol Metab. 2005;90:4350–6.

    Article  CAS  PubMed  Google Scholar 

  25. Klinakis A, Lobry C, Abdel-Wahab O, Oh P, Haeno H, Buonamici S, et al. A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia. Nature. 2011;473:230–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Zage PE, Nolo R, Fang W, Stewart J, Garcia-Manero G, Zweidler-McKay PA. Notch pathway activation induces neuroblastoma tumor cell growth arrest. Pediatr Blood Cancer. 2012;58:682–9.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Wang ZB, Liu YQ, Cui YF. Pathways to caspase activation. Cell Biol Int. 2005;29:489–96.

    Article  CAS  PubMed  Google Scholar 

  28. Krishnakumar R, Kraus WL. The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell. 2010;39:8–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Tamm I, Wang Y, Sausville E, Scudiero DA, Vigna N, Oltersdorf T, et al. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res. 1998;58:5315–20.

    CAS  PubMed  Google Scholar 

  30. Li F, Ye L, Lin SM, Leung LK. Dietary flavones and flavonones display differential effects on aromatase (CYP19) transcription in the breast cancer cells MCF-7. Mol Cell Endocrinol. 2011;344:51–8.

    Article  CAS  PubMed  Google Scholar 

  31. Yang Y, Wolfram J, Shen H, Fang X, Ferrari M. Hesperetin: an inhibitor of the transforming growth factor-beta (TGF-beta) signaling pathway. Eur J Med Chem. 2012;58:390–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Zarebczan B, Pinchot SN, Kunnimalaiyaan M, Chen H. Hesperetin, a potential therapy for carcinoid cancer. Am J Surg. 2011;201:329–32; discussion 333.

    Google Scholar 

  33. Kunnimalaiyaan M, Yan S, Wong F, Zhang YW, Chen H. Hairy enhancer of split-1 (HES-1), a Notch1 effector, inhibits the growth of carcinoid tumor cells. Surgery. 2005;138:1137–42; discussion 1142.

    Google Scholar 

  34. Muller P, Kietz S, Gustafsson JA, Strom A. The anti-estrogenic effect of all-trans-retinoic acid on the breast cancer cell line MCF-7 is dependent on HES-1 expression. J Biol Chem. 2002;277:28376–9.

    Article  CAS  PubMed  Google Scholar 

  35. Castella P, Sawai S, Nakao K, Wagner JA, Caudy M. HES-1 repression of differentiation and proliferation in PC12 cells: role for the helix 3–helix 4 domain in transcription repression. Mol Cell Biol. 2000;20:6170–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Kogai T, Taki K, Brent GA. Enhancement of sodium/iodide symporter expression in thyroid and breast cancer. Endocr Relat Cancer. 2006;13:797–826.

    Article  CAS  PubMed  Google Scholar 

  37. Schmutzler C, Winzer R, Meissner-Weigl J, Kohrle J. Retinoic acid increases sodium/iodide symporter mRNA levels in human thyroid cancer cell lines and suppresses expression of functional symporter in nontransformed FRTL-5 rat thyroid cells. Biochem Biophys Res Commun. 1997;240:832–8.

    Article  CAS  PubMed  Google Scholar 

  38. Grunwald F, Menzel C, Bender H, Palmedo H, Otte R, Fimmers R, et al. Redifferentiation therapy-induced radioiodine uptake in thyroid cancer. J Nucl Med. 1998;39:1903–6.

    CAS  PubMed  Google Scholar 

  39. Gruning T, Tiepolt C, Zophel K, Bredow J, Kropp J, Franke WG. Retinoic acid for redifferentiation of thyroid cancer—does it hold its promise? Eur J Endocrinol. 2003;148:395–402.

    Article  CAS  PubMed  Google Scholar 

  40. Furuya F, Shimura H, Suzuki H, Taki K, Ohta K, Haraguchi K, et al. Histone deacetylase inhibitors restore radioiodide uptake and retention in poorly differentiated and anaplastic thyroid cancer cells by expression of the sodium/iodide symporter thyroperoxidase and thyroglobulin. Endocrinology. 2004;145:2865–75.

    Article  CAS  PubMed  Google Scholar 

  41. Lin JT, Wu MS, Wang WS, Yen CC, Chiou TJ, Liu JH, et al. All-trans retinoid acid increases Notch1 transcript expression in acute promyelocytic leukemia. Adv Ther. 2003;20:337–43.

    Article  CAS  PubMed  Google Scholar 

  42. Greenblatt DY, Cayo MA, Adler JT, Ning L, Haymart MR, Kunnimalaiyaan M, et al. Valproic acid activates Notch1 signaling and induces apoptosis in medullary thyroid cancer cells. Ann Surg. 2008;247:1036–40.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Adler JT, Hottinger DG, Kunnimalaiyaan M, Chen H. Combination therapy with histone deacetylase inhibitors and lithium chloride: a novel treatment for carcinoid tumors. Ann Surg Oncol. 2009;16:481–6.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Endo T, Kaneshige M, Nakazato M, Ohmori M, Harii N, Onaya T. Thyroid transcription factor-1 activates the promoter activity of rat thyroid Na+/I symporter gene. Mol Endocrinol. 1997;11:1747–55.

    CAS  PubMed  Google Scholar 

  45. Ohmori M, Endo T, Harii N, Onaya T. A novel thyroid transcription factor is essential for thyrotropin-induced up-regulation of Na+/I symporter gene expression. Mol Endocrinol. 1998;12:727–36.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

American Cancer Society Research Scholar Grant (Herbert Chen), American Cancer Society MEN2 Thyroid Cancer Professorship (Herbert Chen), RO1 CA121115 (Herbert Chen), and NIH T35 DK062709 Surgery Summer Research Experience for Medical Students (Priyesh N. Patel).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Min Yu MD, PhD or Herbert Chen MD, FACS.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, P.N., Yu, XM., Jaskula-Sztul, R. et al. Hesperetin Activates the Notch1 Signaling Cascade, Causes Apoptosis, and Induces Cellular Differentiation in Anaplastic Thyroid Cancer. Ann Surg Oncol 21 (Suppl 4), 497–504 (2014). https://doi.org/10.1245/s10434-013-3459-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-013-3459-7

Keywords

Navigation