Skip to main content

Advertisement

Log in

Oxidative DNA Damage in Barrett Mucosa: Correlation with Telomeric Dysfunction and p53 Mutation

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Barrett esophagus develops in a scenario of chronic inflammation, linked to free radical formation and oxidative DNA damage. Eight-hydroxydeoxyguanosine, the main oxidative DNA adduct, is partially repaired by a glycosylase (OGG1) whose polymorphism is associated to a reduced repair capacity. Telomeres are particularly prone to oxidative damage, which leads to shortening and cell senescence, while elongation, by telomerase activity, is linked to cell immortalization and cancer. Limited data are available on this point with respect to Barrett esophagus. This study aimed to evaluate the link among 8-hydroxydeoxyguanosine, OGG1 polymorphism, telomerase activity, telomere length, and p53 mutation in Barrett progression.

Methods

Forty consecutive patients with short- and long-segment Barrett esophagus and 20 controls with gastroesophageal reflux disease without Barrett esophagus were recruited. Analysis of biopsy samples was undertaken to study 8-hydroxydeoxyguanosine levels, OGG1 polymorphism, telomerase activity, and telomere length. Serum samples were obtained for p53 mutation.

Results

Controls had significantly lower levels of 8-hydroxydeoxyguanosine and telomerase activity, with normal telomere length and no p53 mutation. In short-segment Barrett esophagus, 8-hydroxydeoxyguanosine levels were higher and telomeres underwent significant shortening, with stimulation of telomerase activity but no p53 mutations. In long-segment Barrett esophagus, 8-hydroxydeoxyguanosine reached maximal levels, with telomere elongation, and 42 % of the patients showed p53 mutation.

Conclusions

In Barrett patients, with disease progression, oxidative DNA damage accumulates, causing telomere instability, telomerase activation, and, in a late phase, mutations in the p53 gene, thus abrogating its activity as the checkpoint of proliferation and apoptosis, and facilitating progression to cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Barrett NR. The lower esophagus lined by columnar epithelium. Surgery. 1957;41:881–94.

    PubMed  CAS  Google Scholar 

  2. Spechler SJ. Clinical practice. Barrett’s esophagus. N Engl J Med. 2002;346:836–42.

    Article  PubMed  Google Scholar 

  3. Shaheen N, Ransohoff DF. Gastroesophageal reflux, Barrett esophagus, and esophageal cancer: scientific review. JAMA. 2002;287:1972–81.

    Article  PubMed  Google Scholar 

  4. Shaheen NJ, Richter JE. Barrett’s oesophagus. Lancet. 2009;373:850–61.

    Article  PubMed  CAS  Google Scholar 

  5. Spechler SJ, Sharma P, Souza RF, Inadomi JM, Shaheen NJ; American Gastroenterological Association. American Gastroenterological Association medical position statement on the management of Barrett’s esophagus. Gastroenterology. 2011;140:1084–91.

    Article  PubMed  Google Scholar 

  6. Hvid-Jensen F, Pedersen L, Drewes AM, Sorensen HT, Funch-Jensen P. Incidence of adenocarcinoma among patients with Barrett’s esophagus. N Engl J Med. 2011;365:1375–83.

    Article  PubMed  CAS  Google Scholar 

  7. Wiseman EF, Ang YS. Risk factors for neoplastic progression in Barrett’s esophagus. World J Gastroenterol. 2011;17:3672–83.

    Article  PubMed  CAS  Google Scholar 

  8. McManus DT, Olaru A, Meltzer SJ. Biomarkers of esophageal adenocarcinoma and Barrett’s esophagus. Cancer Res. 2004;64:1561–9.

    Article  PubMed  CAS  Google Scholar 

  9. Koppert LB, Wijnhoven BP, van Dekken H, Tilanus HW, Dinjens WN. The molecular biology of esophageal adenocarcinoma. J Surg Oncol. 2005;92:169–90.

    Article  PubMed  CAS  Google Scholar 

  10. Fang D, Das KM, Cao W, et al. Barrett’s esophagus: progression to adenocarcinoma and markers. Ann N Y Acad Sci. 2011;1232:210–29.

    Article  PubMed  CAS  Google Scholar 

  11. Olliver JR, Hardie LJ, Gong Y, et al. Risk factors, DNA damage, and disease progression in Barrett’s esophagus. Cancer Epidemiol Biomarkers Prev. 2005;14:620–5.

    Article  PubMed  CAS  Google Scholar 

  12. Kadioglu E, Sardas S, Ergun M, Unal S, Karakaya AE. The role of oxidative DNA damage, DNA repair, GSTM1, SOD2 and OGG1 polymorphisms in individual susceptibility to Barrett’s esophagus. Toxicol Ind Health. 2010;26:67–79.

    Article  PubMed  CAS  Google Scholar 

  13. Zhang HY, Zhang Q, Zhang X, et al. Cancer-related inflammation and Barrett’s carcinogenesis: interleukin-6 and STAT3 mediate apoptotic resistance in transformed Barrett’s cells. Am J Physiol Gastrointest Liver Physiol. 2011;300:G454–60.

    Article  PubMed  CAS  Google Scholar 

  14. Klaunig JE, Kamendulis LM, Hocevar BA. Oxidative stress and oxidative damage in carcinogenesis. Toxicol Pathol. 2010;38:96–109.

    Article  PubMed  CAS  Google Scholar 

  15. Shinmura K, Yokota J. The OGG1 gene encodes a repair enzyme for oxidatively damaged DNA and is involved in human carcinogenesis. Antioxid Redox Signal. 2001;3:597–609.

    Article  PubMed  CAS  Google Scholar 

  16. Lee JS, Oh TY, Ahn BO, et al. Involvement of oxidative stress in experimentally induced reflux esophagitis and Barrett’s esophagus: clue for the chemoprevention of esophageal carcinoma by antioxidants. Mutat Res. 2001;480–1:189–200.

    Article  Google Scholar 

  17. Rasanen JV, Sihvo EI, Ahotupa MO, Farkkila MA, Salo JA. The expression of 8-hydroxydeoxyguanosine in oesophageal tissues and tumours. Eur J Surg Oncol. 2007;33:1164–8.

    Article  PubMed  CAS  Google Scholar 

  18. Dvorak K, Payne CM, Chavarria M, et al. Bile acids in combination with low pH induce oxidative stress and oxidative DNA damage: relevance to the pathogenesis of Barrett’s oesophagus. Gut. 2007;56:763–71.

    Article  PubMed  CAS  Google Scholar 

  19. De Ceglie A, Fisher DA, Filiberti R, Blanchi S, Conio M. Barrett’s esophagus, esophageal and esophagogastric junction adenocarcinomas: the role of diet. Clin Res Hepatol Gastroenterol. 2011;35:7–16.

    Article  PubMed  Google Scholar 

  20. Farinati F, Cardin R, Russo VM, et al. Differential effects of Helicobacter pylori eradication on oxidative DNA damage at the gastroesophageal junction and at the gastric antrum. Cancer Epidemiol Biomarkers Prev. 2004;13:1722–8.

    PubMed  CAS  Google Scholar 

  21. Farinati F, Cardin R, Cassaro M, et al. Helicobacter pylori, inflammation, oxidative damage and gastric cancer: a morphological, biological and molecular pathway. Eur J Cancer Prev. 2008;17:195–200.

    Article  PubMed  CAS  Google Scholar 

  22. Rudolph KL, Hartmann D, Opitz OG. Telomere dysfunction and DNA damage checkpoints in diseases and cancer of the gastrointestinal tract. Gastroenterology. 2009;137:754–62.

    Article  PubMed  CAS  Google Scholar 

  23. Artandi SE, DePinho RA. Telomeres and telomerase in cancer. Carcinogenesis. 2010;31:9–18.

    Article  PubMed  CAS  Google Scholar 

  24. Maser RS, DePinho RA. Connecting chromosomes, crisis, and cancer. Science. 2002;297:565–9.

    Article  PubMed  CAS  Google Scholar 

  25. Shay JW, Wright WE. Role of telomeres and telomerase in cancer. Semin Cancer Biol. 2011;21:349–53.

    Article  PubMed  CAS  Google Scholar 

  26. Sharma P, Dent J, Armstrong D, et al. The development and validation of an endoscopic grading system for Barrett’s esophagus: the Prague C & M criteria. Gastroenterology. 2006;131:1392–9.

    Article  PubMed  Google Scholar 

  27. Zaninotto G, Minnei F, Guirroli E, et al. The Veneto Region’s Barrett’s oesophagus registry: aims, methods, preliminary results. Dig Liver Dis. 2007;39:18–25.

    Article  PubMed  CAS  Google Scholar 

  28. Schlemper RJ, Riddell RH, Kato Y, et al. The Vienna classification of gastrointestinal epithelial neoplasia. Gut. 2000;47:251–5.

    Article  PubMed  CAS  Google Scholar 

  29. Romilda C, Marika P, Alessandro S, et al. Oxidative DNA damage correlates with cell immortalization and mir-92 expression in hepatocellular carcinoma. BMC Cancer. 2012;12:177–85.

    Article  PubMed  Google Scholar 

  30. Kohno T, Shinmura K, Tosaka M, et al. Genetic polymorphisms and alternative splicing of the hOGG1 gene, that is involved in the repair of 8-hydroxyguanine in damaged DNA. Oncogene. 1998;16:3219–25.

    Article  PubMed  CAS  Google Scholar 

  31. Cawthon RM. Telomere measurement by quantitative PCR. Nucl Acids Res. 2002;30:e47.

    Article  PubMed  Google Scholar 

  32. Farinati F, Piciocchi M, Lavezzo E, Bortolami M, Cardin R. Oxidative stress and inducible nitric oxide synthase induction in carcinogenesis. Dig Dis. 2010;28:579–84.

    Article  PubMed  Google Scholar 

  33. Ide H, Kotera M. Human DNA glycosylases involved in the repair of oxidatively damaged DNA. Biol Pharm Bull. 2004;27:480–5.

    Article  PubMed  CAS  Google Scholar 

  34. Farinati F, Cardin R, Bortolami M, et al. Oxidative DNA damage in gastric cancer: CagA status and OGG1 gene polymorphism. Int J Cancer. 2008;123:51–5.

    Article  PubMed  CAS  Google Scholar 

  35. Ferguson LR, Laing WA. Chronic inflammation, mutation and human disease. Mutat Res. 2010;690:1–2.

    Article  PubMed  CAS  Google Scholar 

  36. Bartsch H, Nair J. Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: role of lipid peroxidation, DNA damage, and repair. Langenbecks Arch Surg. 2006;391:499–510.

    Article  PubMed  Google Scholar 

  37. Kuchino Y, Mori F, Kasai H, et al. Misreading of DNA templates containing 8-hydroxydeoxyguanosine at the modified base and at adjacent residues. Nature. 1987;327:77–9.

    Article  PubMed  CAS  Google Scholar 

  38. Fruehauf JP, Meyskens FL Jr. Reactive oxygen species: a breath of life or death? Clin Cancer Res. 2007;13:789–94.

    Article  PubMed  CAS  Google Scholar 

  39. Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem. 2004;266:37–56.

    Article  PubMed  CAS  Google Scholar 

  40. Ock CY, Kim EH, Choi DJ, Lee HJ, Hahm KB, Chung MH. 8-Hydroxydeoxyguanosine: not mere biomarker for oxidative stress, but remedy for oxidative stress–implicated gastrointestinal diseases. World J Gastroenterol. 2012;18:302–8.

    Article  PubMed  CAS  Google Scholar 

  41. Savarino E, Zentilin P, Frazzoni M, et al. Characteristics of gastro-esophageal reflux episodes in Barrett’s esophagus, erosive esophagitis and healthy volunteers. Neurogastroenterol Motil. 2010;22:1061-e280.

    Google Scholar 

  42. Thrift AP, Kendall BJ, Pandeya N, Vaughan TL, Whiteman DC; Study of digestive health. A clinical risk prediction model for Barrett esophagus. Cancer Prev Res (Phila). 2012;5:1115–23.

    Article  PubMed  Google Scholar 

  43. Thanan R, Ma N, Iijima K, et al. Proton pump inhibitors suppress iNOS-dependent DNA damage in Barrett’s esophagus by increasing Mn-SOD expression. Biochem Biophys Res Commun. 2012;421:280–5.

    Article  PubMed  CAS  Google Scholar 

  44. Oikawa S, Kawanishi S. Site-specific DNA damage at GGG sequence by oxidative stress may accelerate telomere shortening. FEBS Lett. 1999;453:365–8.

    Article  PubMed  CAS  Google Scholar 

  45. Gertler R, Doll D, Maak M, Feith M, Rosenberg R. Telomere length and telomerase subunits as diagnostic and prognostic biomarkers in Barrett carcinoma. Cancer. 2008;112:2173–80.

    Article  PubMed  Google Scholar 

  46. Finley JC, Reid BJ, Odze RD, et al. Chromosomal instability in Barrett’s esophagus is related to telomere shortening. Cancer Epidemiol Biomarkers Prev. 2006;15:1451–7.

    Article  PubMed  CAS  Google Scholar 

  47. Vurusaner B, Poli G, Basaga H. Tumor suppressor genes and ROS: complex networks of interactions. Free Radic Biol Med. 2012;52:7–18.

    Article  PubMed  CAS  Google Scholar 

  48. Shields HM, Nardone G, Zhao J, et al. Barrett’s esophagus: prevalence and incidence of adenocarcinomas. Ann N Y Acad Sci. 2011;1232:230–47.

    Article  PubMed  Google Scholar 

  49. Soussi T. The humoral response to the tumor-suppressor gene-product p53 in human cancer: implications for diagnosis and therapy. Immunol Today. 1996;17:354–6.

    Article  PubMed  CAS  Google Scholar 

  50. Famulski W, Sulkowska M, Wincewicz A, et al. P53 correlates positively with VEGF in preoperative sera of colorectal cancer patients. Neoplasma. 2006;53:43–8.

    PubMed  CAS  Google Scholar 

  51. Dobrzycka B, Terlikowski SJ, Kinalski M, Kowalczuk O, Niklinska W, Chyczewski L. Circulating free DNA and p53 antibodies in plasma of patients with ovarian epithelial cancers. Ann Oncol. 2011;22:1133–40.

    Article  PubMed  CAS  Google Scholar 

  52. Lubin R, Zalcman G, Bouchet L, et al. Serum p53 antibodies as early markers of lung cancer. Nat Med. 1995;1:701–2.

    Article  PubMed  CAS  Google Scholar 

  53. Broll R, Duchrow M, Oevermann E, et al. p53 autoantibodies in sera of patients with a colorectal cancer and their association to p53 protein concentration and p53 immunohistochemistry in tumor tissue. Int J Colorectal Dis. 2001;16:22–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Farinati MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardin, R., Piciocchi, M., Tieppo, C. et al. Oxidative DNA Damage in Barrett Mucosa: Correlation with Telomeric Dysfunction and p53 Mutation. Ann Surg Oncol 20 (Suppl 3), 583–589 (2013). https://doi.org/10.1245/s10434-013-3043-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-013-3043-1

Keywords

Navigation