Skip to main content

Advertisement

Log in

Down-Regulation of Pro-Apoptotic Genes is an Early Event in the Progression of Malignant Melanoma

  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Introduction

Down-regulation of apoptosis genes has been implicated in the development and progression of malignant melanoma. We used cDNA microarray to evaluate pro-apoptotic gene expression comparing normal skin to melanoma (thin and thick), nodal disease and distant metastases.

Methods

Twenty-eight specimens including skin (= 1), thin melanoma (= 6), thick melanoma (= 7), nodal disease (= 6), and distant metastases (= 8), were harvested at the time of resection from 16 individuals. RNA was isolated and microarray analysis utilizing the Affymetrix GeneChip (54,000 genetic elements, U133A+B... levels) was performed. Mean level of expression was calculated for each gene within a sample group. Expression profiles were then compared between tissue groups. Student’s t-test was used to determine variance in expression between groups.

Results

We reviewed the expression of 54,000 genetic elements, of which 2,015 were found to have significantly altered expression. This represents 1,602 genes. Twenty-two pro-apoptotic genes were found to be down-regulated when compared to normal skin. Overall reduction was evaluated comparing normal skin to metastases with a range of 3.31–64.04-fold-decrease. When comparing the tissue types sequentially, the greatest fold-decrease in gene expression occurred when comparing skin to all melanomas (thin and thick) (= 0.011). Subset analysis comparing normal skin to thin melanoma or thick melanoma, revealed the greatest component of overall reduction at the transition from thin to thick lesions (= 0.003).

Conclusion

Sequential down-regulation of pro-apoptotic genes is associated with the progression of malignant melanoma. The greatest fold-decrease occurs in the transformation from thin to thick lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.

Similar content being viewed by others

References

  1. Surveillance, epidemiology and end results (SEER) program public-use data (1973–2001). National Cancer Institute, DCCPS, Surveillance Research Program, Cancer Statistics Branch, released April 2004, based on the November 2003 submission

  2. Eschrich S, Yang I, Bloom G, et al. Molecular staging for survival prediction of colorectal cancer patients. J Clin Oncol 2005;23:3526–35

    Article  PubMed  CAS  Google Scholar 

  3. Frederiksen CM, Knudsen S, Laurberg S, Orntoft TF. Classification of Dukes' B and C colorectal cancers using expression arrays. J Cancer Res Clin Oncol 2003;129:263–71

    PubMed  Google Scholar 

  4. Barrier A, Lemoine A, Boelle PY, et al. Colon cancer prognosis prediction by gene expression profiling. Oncogene 2005;24:6155–64

    Article  PubMed  CAS  Google Scholar 

  5. Centeno BA, Enkemann SA, Coppola D, et al. Classification of human tumors using gene expression profiles obtained after microarray analysis of fine-needle aspiration biopsy samples. Cancer 2005;105:101–9

    Article  PubMed  Google Scholar 

  6. Bloom G, Yang IV, Boulware D, et al. Multi-platform, multi-site, microarray-based human tumor classification. Am J Pathol 2004;164:9–16

    PubMed  CAS  Google Scholar 

  7. Clarke PA, te Poele R, Workman P. Gene expression microarray technologies in the development of new therapeutic agents. Eur J Cancer 2004;40:2560–91

    Article  PubMed  CAS  Google Scholar 

  8. Huang Y, Sadee W. Drug sensitivity and resistance genes in cancer chemotherapy: a chemogenomics approach. Drug Discov Today 2003;8:356–63

    Article  PubMed  CAS  Google Scholar 

  9. Alaoui-Jamali MA, Dupre I, Qiang H. Prediction of drug sensitivity and drug resistance in cancer by transcriptional and proteomic profiling. Drug Resist Updat 2004;7:245–55

    Article  PubMed  CAS  Google Scholar 

  10. Mariadason JM, Arango D, Shi Q, et al. Gene expression profiling-based prediction of response of colon carcinoma cells to 5-fluorouracil and camptothecin. Cancer Res 2003;63:8791–812

    PubMed  CAS  Google Scholar 

  11. Monks NR, Pardee AB. Targeting the NF-kappaB pathway in estrogen receptor negative MDA-MB-231 breast cancer cells using small inhibitory RNAs. J Cell Biochem 2006;98(1):221–33

    Article  PubMed  CAS  Google Scholar 

  12. Monks NR, Biswas DK, Pardee AB. Blocking anti-apoptosis as a strategy for cancer chemotherapy: NF-kappaB as a target. J Cell Biochem 2004;92:646–50

    Article  PubMed  CAS  Google Scholar 

  13. Kolb JP, Kern C, Quiney C, et al. Re-establishment of a normal apoptotic process as a therapeutic approach in B-CLL. Curr Drug Targets Cardiovasc Haematol Disord 2003;3:261–86

    Article  PubMed  CAS  Google Scholar 

  14. D’Agnano I, Valentini A, Fornari C, et al. Myc down-regulation induces apoptosis in M14 melanoma cells by increasing p27(kip1) levels. Oncogene 2001;20:2814–25

    Article  PubMed  CAS  Google Scholar 

  15. Fesik SW. Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 2005;5:876–85

    Article  PubMed  CAS  Google Scholar 

  16. Jonsson H, Peng SL. Forkhead transcription factors in immunology. Cell Mol Life Sci 2005;62:397–409

    Article  PubMed  CAS  Google Scholar 

  17. Kaghad M, Bonnet H, Yang A, et al. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 1997;90:809–19

    Article  PubMed  CAS  Google Scholar 

  18. Zaika AI, Kovalev S, Marchenko ND, Moll UM. Overexpression of the wild type p73 gene in breast cancer tissues and cell lines. Cancer Res 1999;59:3257–63

    PubMed  CAS  Google Scholar 

  19. Cai YC, Yang GY, Nie Y, et al. Molecular alterations of p73 in human esophageal squamous cell carcinomas: loss of heterozygosity occurs frequently; loss of imprinting and elevation of p73 expression may be related to defective p53. Carcinogenesis 2000;21:683–9

    Article  PubMed  CAS  Google Scholar 

  20. Sunahara M, Ichimiya S, Nimura Y, et al. Mutational analysis of the p73 gene localized at chromosome 1p36.3 in colorectal carcinomas. Int J Oncol 1998;13:319–23

    PubMed  CAS  Google Scholar 

  21. Chi SG, Chang SG, Lee SJ, et al. Elevated and biallelic expression of p73 is associated with progression of human bladder cancer. Cancer Res 1999;59:2791–3

    PubMed  CAS  Google Scholar 

  22. Corn PG, Kuerbitz SJ, van Noesel MM, et al. Transcriptional silencing of the p73 gene in acute lymphoblastic leukemia and Burkitt's lymphoma is associated with 5′ CpG island methylation. Cancer Res 1999;59:3352–6

    PubMed  CAS  Google Scholar 

  23. Kawano S, Miller CW, Gombart AF, et al. Loss of p73 gene expression in leukemias/lymphomas due to hypermethylation. Blood 1999;94:1113–20

    PubMed  CAS  Google Scholar 

  24. Flores ER, Tsai KY, Crowley D, et al. p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 2002;416:560–4

    Article  PubMed  CAS  Google Scholar 

  25. Irwin MS, Kondo K, Marin MC, et al. Chemosensitivity linked to p73 function. Cancer Cell 2003;3:403–10

    Article  PubMed  CAS  Google Scholar 

  26. Marsters SA, Sheridan JP, Donahue CJ, et al. Apo-3, a new member of the tumor necrosis factor receptor family, contains a death domain and activates apoptosis and NF-kappa B. Curr Biol 1996;6:1669–76

    Article  PubMed  CAS  Google Scholar 

  27. Eggert A, Grotzer MA, Zuzak TJ, et al. Expression of Apo-3 and Apo-3L in primitive neuroectodermal tumours of the central and peripheral nervous system. Eur J Cancer 2002;38:92–8

    Article  PubMed  CAS  Google Scholar 

  28. Screaton GR, Xu XN, Olsen AL, et al. LARD: a new lymphoid-specific death domain containing receptor regulated by alternative pre-mRNA splicing. Proc Natl Acad Sci USA 1997;94:4615–9

    Article  PubMed  CAS  Google Scholar 

  29. Chawla-Sarkar M, Bae SI, Reu FJ, et al. Downregulation of Bcl-2, FLIP or IAPs (XIAP and survivin) by siRNAs sensitizes resistant melanoma cells to Apo2L/TRAIL-induced apoptosis. Cell Death Differ 2004;11:915–23

    Article  PubMed  CAS  Google Scholar 

  30. Fulda S, Debatin KM. Sensitization for tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by the chemopreventive agent resveratrol. Cancer Res 2004;64:337–46

    Article  PubMed  CAS  Google Scholar 

  31. Ren DH, Mayhew E, Hay C, et al. Uveal melanoma expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors and susceptibility to TRAIL-induced apoptosis. Invest Ophthalmol Vis Sci 2004;45:1162–8

    Article  PubMed  Google Scholar 

  32. Zhang XD, Gillespie SK, Borrow JM, Hersey P. The histone deacetylase inhibitor suberic bishydroxamate: a potential sensitizer of melanoma to TNF-related apoptosis-inducing ligand (TRAIL) induced apoptosis. Biochem Pharmacol 2003;66:1537–45

    Article  PubMed  CAS  Google Scholar 

  33. Ivanov VN, Bhoumik A, Ronai Z. Death receptors and melanoma resistance to apoptosis. Oncogene 2003;22:3152–61

    Article  PubMed  CAS  Google Scholar 

  34. Wu JJ, Zhang XD, Gillespie S, Hersey P. Selection for TRAIL resistance results in melanoma cells with high proliferative potential. FEBS Lett 2005;579:1940–4

    Article  PubMed  CAS  Google Scholar 

  35. Drosopoulos KG, Roberts ML, Cermak L, et al. Transformation by oncogenic RAS sensitizes human colon cells to TRAIL-induced apoptosis by up-regulating death receptor 4 and death receptor 5 through a MEK-dependent pathway. J Biol Chem 2005;280:22856–67

    Article  PubMed  CAS  Google Scholar 

  36. Horak P, Pils D, Haller G, et al. Contribution of epigenetic silencing of tumor necrosis factor-related apoptosis inducing ligand receptor 1 (DR4) to TRAIL resistance and ovarian cancer. Mol Cancer Res 2005;3:335–43

    Article  PubMed  CAS  Google Scholar 

  37. Frank B, Hemminki K, Shanmugam KS, et al. Association of death receptor 4 haplotype 626C–683C with an increased breast cancer risk. Carcinogenesis 2005;26:1975–7

    Article  PubMed  CAS  Google Scholar 

  38. Bilanges B, Varrault A, Basyuk E, et al. Loss of expression of the candidate tumor suppressor gene ZAC in breast cancer cell lines and primary tumors. Oncogene 1999;18:3979–88

    Article  PubMed  CAS  Google Scholar 

  39. Cvetkovic D, Pisarcik D, Lee C, et al. Altered expression and loss of heterozygosity of the LOT1 gene in ovarian cancer. Gynecol Oncol 2004;95:449–55

    Article  PubMed  CAS  Google Scholar 

  40. Perou CM, Jeffrey SS, van de Rijn M, et al. Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci USA 1999;96:9212–7

    Article  PubMed  CAS  Google Scholar 

  41. Singhal S, Amin KM, Kruklitis R, et al. Alterations in cell cycle genes in early stage lung adenocarcinoma identified by expression profiling. Cancer Biol Ther 2003;2:291–8

    PubMed  CAS  Google Scholar 

  42. Basyuk E, Coulon V, Le Digarcher A, et al. The candidate tumor suppressor gene ZAC is involved in keratinocyte differentiation and its expression is lost in basal cell carcinomas. Mol Cancer Res 2005;3:483–92

    Article  PubMed  CAS  Google Scholar 

  43. Kidd VJ, Lahti JM, Teitz T. Proteolytic regulation of apoptosis. Semin Cell Dev Biol 2000;11:191–201

    Article  PubMed  CAS  Google Scholar 

  44. Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell 2004;116:205–19

    Article  PubMed  CAS  Google Scholar 

  45. Fan TJ, Han LH, Cong RS, Liang J. Caspase family proteases and apoptosis. Acta Biochim Biophys Sin (Shanghai) 2005;37:719–27

    Article  CAS  Google Scholar 

  46. Harwood SM, Yaqoob MM, Allen DA. Caspase and calpain function in cell death: bridging the gap between apoptosis and necrosis. Ann Clin Biochem 2005;42:415–31

    Article  PubMed  CAS  Google Scholar 

  47. Johnstone RW, Tommerup N, Hansen C, et al. Mapping of the human PAWR (par-4) gene to chromosome 12q21. Genomics 1998;53:241–3

    Article  PubMed  CAS  Google Scholar 

  48. Sells SF, Han SS, Muthukkumar S, et al. Expression and function of the leucine zipper protein Par-4 in apoptosis. Mol Cell Biol 1997;17:3823–32

    PubMed  CAS  Google Scholar 

  49. Garcia-Cao I, Lafuente MJ, Criado LM, et al. Genetic inactivation of Par4 results in hyperactivation of NF-kappaB and impairment of JNK and p38. EMBO Rep 2003;4:307–12

    Article  PubMed  CAS  Google Scholar 

  50. Pruitt K, Ulku AS, Frantz K, et al. Ras-mediated loss of the pro-apoptotic response protein Par-4 is mediated by DNA hypermethylation through Raf-independent and Raf-dependent signaling cascades in epithelial cells. J Biol Chem 2005;280:23363–70

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam I. Riker MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, E.H., Lewis, J.M., McLoughlin, J.M. et al. Down-Regulation of Pro-Apoptotic Genes is an Early Event in the Progression of Malignant Melanoma. Ann Surg Oncol 14, 1416–1423 (2007). https://doi.org/10.1245/s10434-006-9226-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-006-9226-2

Keywords

Navigation