Skip to main content
Log in

Influence of Testing Parameters on In Vitro Tramadol Release from Poloxamer Thermogels using the Immersion Cell Method

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

ABSTRACT

The immersion cell is an in vitro performance test of drug release from semisolids. Several studies made use of immersion cells to investigate drug release from thermosensitive Poloxamer-based gels; however, specifications on the parameter setting are not yet available. Therefore, the aim of this study was to evaluate the influence of testing parameters on tramadol (a model drug) release, release rate, and dissolution efficiency (DE) from Poloxamer gels, using immersion cells. The thermosensitive gelling formulation showed batch-to-batch uniformity of gelling behavior, drug content, and drug release. The use of a membrane in the immersion cell resulted in slower drug release as compared to the absence of a membrane. Moreover, the faster the paddle rotation, the faster the drug release was. Membrane thickness showed a strong and significant linear relationship with corresponding DE values (Pearson’s correlation coefficient, r = −0.9470; p = 0.004). Factors that did not influence drug release include paddle position, i.e., distance between paddle and membrane, as well as membrane mean pore size. This study sets forth the importance of carefully controlling the following parameters including presence/absence of membrane, paddle rotation speed, and membrane thickness during the setup of release experiments from gels using immersion cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Freire AC, Basit AW. Dissolution testing of solid dosage forms. Aultons Pharm. Des Manuf Med. 2013. p. 611–22.

  2. Olejnik A, Goscianska J, Nowak I. Active compounds release from semisolid dosage forms. J Pharm Sci. 2012;101:4032–45.

    Article  CAS  PubMed  Google Scholar 

  3. Higuchi T. Rate of release of medicaments from ointment bases containing drugs in suspension. J Pharm Sci. 1961;50:874–5.

    Article  CAS  PubMed  Google Scholar 

  4. Ueda CT, Shah VP, Derdzinski K, Ewing G, Flynn G, Maibach H, et al. Topical and transdermal drug products. Pharmacopeial Forum. 2009;35:750–64.

    Google Scholar 

  5. Csóka I, Csányi E, Zapantis G, Nagy E, Fehér-Kiss A, Horváth G, et al. In vitro and in vivo percutaneous absorption of topical dosage forms: case studies. Int J Pharm. 2005;291:11–9.

    Article  PubMed  Google Scholar 

  6. Vlachou MD, Rekkas DM, Dallas PP, Choulis NH. Development and in vitro evaluation of griseofulvin gels using Franz diffusion cells. Int J Pharm. 1992;82:47–52.

    Article  CAS  Google Scholar 

  7. Liebenberg W, Engelbrecht E, Wessels A, Devarakonda B, Yang W, De Villiers MM, et al. A comparative study of the release of active ingredients from semisolid cosmeceuticals measured with Franz, enhancer or flow-through cell diffusion apparatus. J Food Drug Anal. 2004;12.

  8. Chattaraj SC, Kanfer I. “The insertion cell”: a novel approach to monitor drug release from semi-solid dosage forms. Int J Pharm. 1996;133:59–63.

    Article  CAS  Google Scholar 

  9. Collins CC, Little AC, Sanghvi PP, Hofer H, Swon JE, inventors. Transdermal cell test matter volumeadjustment device. United States patent US5408865 A. 1995.

  10. Sanghvi PP, Collins CC. Comparison of diffusion studies of hydrocortisone between the Franz cell and the enhancer cell. Drug Dev Ind Pharm. 1993;19:1573–85.

    Article  CAS  Google Scholar 

  11. Fares HM, Zatz JL. Dual-probe method for assessing skin barrier integrity: effect of storage conditions on permeability of micro-Yucatan pig skin. J Soc Cosmet Chem. 1997;48:175–86.

    CAS  Google Scholar 

  12. Rege PR, Vilivalam VD, Collins CC. Development in release testing of topical dosage forms : use of the enhancer cell ™ with automated sampling. J Pharm Biomed Anal. 1998;17:1225–33.

    Article  CAS  Google Scholar 

  13. FDA-SUPAC-SS. Guidance for industry. SUPAC-SS non-sterile semisolid dosage forms. Scale-up and postapproval changes: chemistry, manufacturing and controls. In vitro release testing and in vivo bioequivalence documentation. 1997.

  14. Chang RK, Raw A, Lionberger R, Yu L. Generic development of topical dermatologic products: formulation development, process development, and testing of topical dermatologic products. AAPS J. 2013;15:41–52.

    Article  CAS  PubMed  Google Scholar 

  15. FDA. Draft Guidance on Acyclovir [Internet]. 2012 [cited 2017 Jan 20]. Available from: http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm296733.pdf

  16. Singh NK, Lee DS. In situ gelling pH-and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery. J Control Release. 2014;193:214–27.

    Article  CAS  PubMed  Google Scholar 

  17. Ashley GW, Henise J, Reid R, Santi DV. Hydrogel drug delivery system with predictable and tunable drug release and degradation rates. Proc Natl Acad Sci. 2013;110:2318–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Escobar-Chávez JJ, López-Cervantes M, Naik A, Kalia Y, Quintanar-Guerrero D, Ganem-Quintanar A. Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations. J Pharm Pharm Sci. 2006;9:339–58.

    PubMed  Google Scholar 

  19. Perinelli DR, Bonacucina G, Pucciarelli S, Cespi M, Casettari L, Polzonetti V, et al. Could albumin affect the self-assembling properties of a block co-polymer system and drug release? An In-Vitro Study Pharm Res. 2015;32:1094–104.

    CAS  PubMed  Google Scholar 

  20. Djekic L, Krajisnik D, Martinovic M, Djordjevic D. Characterization of gelation process and drug release pro fi le of thermosensitive liquid lecithin/poloxamer 407 based gels as carriers for percutaneous delivery of ibuprofen. Int J Pharm. 2015;490:180–9.

    Article  CAS  PubMed  Google Scholar 

  21. Anderson BC, Pandit NK, Mallapragada SK. Understanding drug release from poly (ethylene oxide)-b-poly (propylene oxide)-b-poly (ethylene oxide) gels. J Control Release. 2001;70:157–67.

    Article  CAS  PubMed  Google Scholar 

  22. Pandit NK, Wang D. Salt effects on the diffusion and release rate of propranolol from poloxamer 407 gels. Int J Pharm. 1998;167:183–9.

    Article  CAS  Google Scholar 

  23. Moore T, Croy S, Mallapragada S, Pandit N. Experimental investigation and mathematical modeling of Pluronic® F127 gel dissolution: drug release in stirred systems. J Control Release. 2000;67:191–202.

    Article  CAS  PubMed  Google Scholar 

  24. Cespi M, Bonacucina G, Pucciarelli S, Cocci P, Romano D, Casettari L, et al. Evaluation of thermosensitive poloxamer 407 gel systems for the sustained release of estradiol in a fish model. Eur J Pharm Biopharm. 2014;88:954–61.

    Article  CAS  PubMed  Google Scholar 

  25. Cespi M, Bonacucina G, Casettari L, Mencarelli G, Palmieri GF. Poloxamer thermogel systems as medium for crystallization. Pharm Res. 2012;29:818–26.

    Article  CAS  PubMed  Google Scholar 

  26. <1724> Semisolid drug products—performance tests. United States Pharmacop. Natl. Formul. USP 37–NF 32. The United States Pharmacopeial Convention, Rockville, MD; 2014. p. pp 1273–84.

  27. Costa P, Lobo JMS, Sousa Lobo JM, Lobo JMS. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:123–33.

    Article  CAS  PubMed  Google Scholar 

  28. Ricci EJ, Lunardi LO, Nanclares DMA, Marchetti JM. Sustained release of lidocaine from poloxamer 407 gels. Int J Pharm. 2005;288:235–44.

    Article  CAS  PubMed  Google Scholar 

  29. Gilbert JC, Hadgraft J, Bye A, Brookes LG. Drug release from Pluronic F-127 gels. Int J Pharm. 1986;32:223–8.

    Article  CAS  Google Scholar 

  30. Bonacucina G, Spina M, Misici-Falzi M, Cespi M, Pucciarelli S, Angeletti M, et al. Effect of hydroxypropyl β-cyclodextrin on the self-assembling and thermogelation properties of poloxamer 407. Eur J Pharm Sci. 2007;32:115–22.

    Article  CAS  PubMed  Google Scholar 

  31. Cespi M, Bonacucina G, Mencarelli G, Pucciarelli S, Giorgioni G, Palmieri GF. Monitoring the aggregation behaviour of self-assembling polymers through high-resolution ultrasonic spectroscopy. Int J Pharm. 2010;388:274–9.

    Article  CAS  PubMed  Google Scholar 

  32. Zatz JL. Drug release from semisolids: effect of membrane permeability on sensitivity to product parameters. Pharm Res. 1995;12:787–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Cespi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisharat, L., Perinelli, D.R., Berardi, A. et al. Influence of Testing Parameters on In Vitro Tramadol Release from Poloxamer Thermogels using the Immersion Cell Method. AAPS PharmSciTech 18, 2706–2716 (2017). https://doi.org/10.1208/s12249-017-0753-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0753-x

Keywords

Navigation