Skip to main content

Advertisement

Log in

Design and Development of Clopidogrel Bisulfate Gastroretentive Osmotic Formulation Using Quality by Design Tools

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Clopidogrel bisulfate (CBS) is antiplatelet drug and it is becoming a drug of choice in the treatment and management of prevention of heart attacks and strokes. CBS is stable and soluble in acidic pH; therefore, retention in stomach for prolonged period appears to be beneficial for controlling the bioavailability. The gastroretentive osmotic system (GROS) facilitates prolonged retention of drug in stomach and provides zero-order drug release. A complex formulation like GROS poses many challenges, and QbD tools can help in designing robust formulation which takes all aspects of product and process development in order to deliver a robust product. The GROS was formulated in three steps: core tablet, osmotic tablet, and gastroretentive osmotic tablet. The design of experiment was used for screening and optimization of formulation and process-related parameters. The dissolution study was carried out to analyze the release pattern of tablet. The optimized batch O-4 showed cumulative drug release of 19.43, 30.49, 64.41, and 85.11% at 2, 4, 8, and 12 h which is in the range of QTPP predictions. The novel technique of GROS was implemented successfully which demonstrates robust design giving consistent and desired results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Richter T, Mürdter TE, Heinkele G, Pleiss J, Tatzel S, Schwab M, et al. Potent mechanism-based inhibition of human CYP2B6 by clopidogrel and ticlopidine. J Pharmacol Exp Ther. 2004;308(1):189–97.

    Article  CAS  PubMed  Google Scholar 

  2. Streubel A, Siepmann J, Bodmeier R. Gastroretentive drug delivery systems. Expert Opin Drug Deliv. 2006;3(2):217–33.

    Article  CAS  PubMed  Google Scholar 

  3. Shokri J, Ahmadi P, Rashidi P, Shahsavari M, Rajabi-Siahboomi A, Nokhodchi A. Swellable elementary osmotic pump (SEOP): an effective device for delivery of poorly water-soluble drugs. Eur J Pharm Biopharm. 2008;68(2):289–97.

    Article  CAS  PubMed  Google Scholar 

  4. Eckenhoff B, Yum SI. The osmotic pump: novel research tool for optimizing drug regimens. Biomaterials. 1981;2(2):89–97.

    Article  CAS  PubMed  Google Scholar 

  5. Theeuwes F, Yum SI. Principles of the design and operation of generic osmotic pumps for the delivery of semisolid or liquid drug formulations. Ann Biomed Eng. 1976;4(4):343–53.

    Article  CAS  PubMed  Google Scholar 

  6. Mehta B, Doshi M, Joshi M, inventors; JB Chemicals & Pharmaceuticals Limited, assignee. Floating osmotic device for controlled release drug delivery. United States patent application US 09/992,897. 2001 Nov 6.

  7. Guan J, Zhou L, Nie S, Yan T, Tang X, Pan W. A novel gastric-resident osmotic pump tablet: in vitro and in vivo evaluation. Int J Pharm. 2010;383(1):30–6.

    Article  CAS  PubMed  Google Scholar 

  8. Pawar VK, Kansal S, Asthana S, Chourasia MK. Industrial perspective of gastroretentive drug delivery systems: physicochemical, biopharmaceutical, technological and regulatory consideration. Expert Opin Drug Deliv. 2012;9(5):551–65.

    Article  CAS  PubMed  Google Scholar 

  9. Kumar P, Singh S, Mishra B. Floating osmotic drug delivery system of ranitidine hydrochloride: development and evaluation—a technical note. AAPS PharmSciTech. 2008;9(2):480–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Khan ZA, Tripathi R, Mishra B. Floating elementary osmotic pump tablet (FEOPT) for controlled delivery of diethylcarbamazine citrate: a water-soluble drug. AAPS PharmSciTech. 2011;12(4):1312–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. ICH Q8 (R2) guideline for industry, pharmaceutical development, www.fda.gov, 2009, 9.

  12. ICH Q9 guideline for industry, quality risk management, www.fda.gov, 2005.

  13. Charoo NA, Shamsher AA, Zidan AS, Rahman Z. Quality by design approach for formulation development: a case study of dispersible tablets. Int J Pharm. 2012;423(2):167–78.

    Article  CAS  PubMed  Google Scholar 

  14. Badawi MA, El-Khordagui LK. A quality by design approach to optimization of emulsions for electrospinning using factorial and D-optimal designs. Eur J Pharm Sci. 2014;58:44–54.

    Article  CAS  PubMed  Google Scholar 

  15. Verma S, Lan Y, Gokhale R, Burgess DJ. Quality by design approach to understand the process of nanosuspension preparation. Int J Pharm. 2009;377(1):185–98.

    Article  CAS  PubMed  Google Scholar 

  16. Xu X, Costa AP, Khan MA, Burgess DJ. Application of quality by design to formulation and processing of protein liposomes. Int J Pharm. 2012;434(1):349–59.

    Article  CAS  PubMed  Google Scholar 

  17. Patwardhan K, Asgarzadeh F, Dassinger T, Albers J, Repka MA. A quality by design approach to understand formulation and process variability in pharmaceutical melt extrusion processes. J Pharm Pharmacol. 2015;67(5):673–84.

    Article  CAS  PubMed  Google Scholar 

  18. Landin M, Rowe RC, York P. Establishing and analyzing the design space in the development of direct compression formulations by gene expression programming. Int J Pharm. 2012;434(1):35–42.

    Article  CAS  PubMed  Google Scholar 

  19. Patil-Gadhe A, Pokharkar V. Single step spray drying method to develop proliposomes for inhalation: a systematic study based on quality by design approach. Pulm Pharmacol Ther. 2014;27(2):197–207.

    Article  CAS  PubMed  Google Scholar 

  20. Kozinski M, Bielis L, Wisniewska-Szmyt J, Boinska J, Stolarek W, Marciniak A, et al. Diurnal variation in platelet inhibition by clopidogrel. Platelets. 2011;22(8):579–87.

    Article  CAS  PubMed  Google Scholar 

  21. Tofler GH, Brezinski D, Schafer AI, Czeisler CA, Rutherford JD, Willich SN, et al. Concurrent morning increase in platelet aggregability and the risk of myocardial infarction and sudden cardiac death. N Engl J Med. 1987;316(24):1514–8.

    Article  CAS  PubMed  Google Scholar 

  22. Vora C, Patadia R, Mittal K, Mashru R. Risk based approach for design and optimization of stomach specific delivery of rifampicin. Int J Pharm. 2013;455(1):169–81.

    Article  CAS  PubMed  Google Scholar 

  23. Plackett RL, Burman JP. The design of optimum multifactorial experiments. Biometrika. 1946;33(4):305–25.

    Article  Google Scholar 

  24. Liu L, Wang X. Solubility-modulated monolithic osmotic pump tablet for atenolol delivery. Eur J Pharm Biopharm. 2008;68(2):298–302.

    Article  CAS  PubMed  Google Scholar 

  25. Badhan AC, Mashru RC, Shah PP, Thakkar AR, Dobaria NB. Development and evaluation of sustained release gastroretentive minimatrices for effective treatment of H. pylori infection. AAPS PharmSciTech. 2009;10(2):459–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gupta BP, Thakur N, Jain NP, Banweer J, Jain S. Osmotically controlled drug delivery system with associated drugs. J Pharm Pharm Sci. 2010;13(4):571–88.

    Article  CAS  PubMed  Google Scholar 

  27. Herbig SM, Cardinal JR, Korsmeyer RW, Smith KL. Asymmetric-membrane tablet coatings for osmotic drug delivery. J Control Release. 1995;35(2):127–36.

    Article  CAS  Google Scholar 

  28. Thombre AG, Appel LE, Chidlaw MB, Daugherity PD, Dumont F, Evans LA, et al. Osmotic drug delivery using swellable-core technology. J Control Release. 2004;94(1):75–89.

    Article  CAS  PubMed  Google Scholar 

  29. Sethia S, Squillante E. Solid dispersion of carbamazepine in PVP K30 by conventional solvent evaporation and supercritical methods. Int J Pharm. 2004;272(1):1.

    Article  CAS  PubMed  Google Scholar 

  30. Zhao Z, Wu C, Zhao Y, Hao Y, Liu Y, Zhao W. Development of an oral push–pull osmotic pump of fenofibrate-loaded mesoporous silica nanoparticles. Int J Nanomedicine. 2015;10:1691.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Pandey P, Pandey S. Delivery of poorly water soluble drugs from swellable elementary osmotic pump and effect of formulation variables. Turk J Pharm Sci. 2013;10:22.

    Google Scholar 

  32. Yuan J, Shang PP, Wu SH. Effects of polyethylene glycol on morphology, thermomechanical properties, and water vapor permeability of cellulose acetate-free films. Pharm Technol. 2001;25(10):62–75.

    CAS  Google Scholar 

  33. Verma RK, Krishna DM, Garg S. Formulation aspects in the development of osmotically controlled oral drug delivery systems. J Control Release. 2002;79(1):7–27.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Nilesh S. Desai thanks University Grants Commission, India, for the financial assistance to the work in the form of UGC-BSR Project file no. 7-23/2007(BSR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravindra Purohit.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desai, N., Purohit, R. Design and Development of Clopidogrel Bisulfate Gastroretentive Osmotic Formulation Using Quality by Design Tools. AAPS PharmSciTech 18, 2626–2638 (2017). https://doi.org/10.1208/s12249-017-0731-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0731-3

Keywords

Navigation